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ON CLUSTERING IN CENTRAL CONFIGURATIONS

GREGORY BUCK

(Communicated by Kenneth R. Meyer)

Abstract. Central configurations lead to special solutions of the «-body prob-

lem. In this paper we present a geometric condition that all central configura-

tions must satisfy: a central configuration cannot have too much 'clustering'—

they are bounded away from the diagonal in configuration space. An explicit

bound is given.

1. INTRODUCTION

The Newtonian «-body problem is intractable for n > 3 . One approach is

then to look for particular solutions. In this spirit we consider central configura-

tions. Central configurations are initial arrangements of the bodies that lead to

special solutions of the «-body problem. Roughly speaking, they are solutions

that remain self-similar for all time—that is, the ratios of the mutual distances

between the bodies remain constant. There is extensive literature concerning

these solutions. For a comprehensive introduction the reader should see [Saari]

and the references therein. Recent work includes [Meyer-Schmidt], [Moekel],

[Hall], and [Simo].

Here a general property of all central configurations is presented. A concept

of clustering is defined and it is shown that in a central configuration the masses

cannot be too tightly clustered. This extends an important result of M. Shub's

(see below and [Shub]). The proof is geometric in nature.

We shall need some definitions and terminology. These are standard to Ce-

lestial Mechanics discussions. (See [Saari])

Definition 1. Notation

A configuration X = {xx, ... ,xn,mx, ... ,mn} of n bodies is a choice of

positions x,, ... ,xn G R   and masses mx, ... , mn G R.

The potential of a configuration, denoted U(X), is defined as

Emm.
,    '   J rx.-x,.
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The moment of inertia of a configuration, denoted I(X), is defined as

I(X) = Wmi\xit
2

(=0

The force on the ith body of a configuration, denoted F(x¡) or F¡, is

f_       m;w7(x;-x7)

The acceleration of the ith body, denoted A(x¡) or Ai, is

The equations of motion, or Newton's equations, are

m¡x¡ = F(x¡),       i = l,...,«

(where • represents the derivative with respect to time).

A central configuration is a configuration such that if the initial velocities

x, (0) = • • ■ = x„(0) = 0, then the solution of the equations of motion is of the

form x¡(t) = <p(t)xi for all i, where

p[0,f*] —[0,1]       withc>(0) = 1 and <»(/*) = 0.

That is, starting at rest the configuration collapses homothetically.

A necessary and sufficient condition for a configuration to be central is:

(1)        A¡ = kXj,       for all i, where A: is a constant independent of i.

We shall sometimes refer to ( 1 ) as the central configuration equations, and in

practice will use ( 1 ) as our definition. See [Saari] for more on the definitions of

central configuration.

As it stands under the definition, the class of central configurations is larger

than it need be. We need not distinguish between configurations that differ

only by translation or rotation or a combination thereof. Additionally, we can

call configurations equivalent if they differ only by scale—this is sensible both

by the definition and by the equations (1). If two central configurations differ

only by scale, the larger would collapse through the smaller if begun at rest. In

terms of the central configuration equations, configurations that differ by scale

differ in the constant k in equations (1). The standard procedure is to choose

a representative of the equivalence classes, say by setting 7 = 1 . An alternative

is a choice for k in the central configuration equations. Another alternative,

employed below, is to set a particular mutual distance \xj - x ,| = 1 .

It is known that central configurations are critical points of the potential

restricted to the sphere where the moment of inertia is equal to a constant. In

[Shub] M. Shub showed that under these conditions the potential does not have

any singularities in a neighborhood of the diagonal, that is, where x¡ = x ,
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i ^ j. This implies that central configurations do not limit onto the diagonal.

In the following we find an explicit neighborhood of the diagonal that has no

central configurations, giving an alternative proof of Shub's result, as well as

an explicit bound for the size of the neighborhood. The bound depends on the

masses of the bodies, the mutual distances between the bodies, and the number

of bodies in the configuration. This gives a bound on "clustering" in central

configurations—a configuration such as that in Figure 1 cannot be central. In the

following the case of planar configurations is discussed, the proof goes over to

spatial configurations with hardly any changes, resulting in the same estimates.

We note that in [Schmidt] D. Schmidt gives inequalities that must be satisfied

in the cases of four and five bodies. These provide some bounds on clustering

in these cases.

m4
m5

mj»

• • m6
m1   m2

Figure 1. Let mx — m2 = • • • = m6. Then from

the results in this paper (Theorems 1,2) this configu-

ration cannot be central, because mx,m2,m3, are too

clustered.

2. The theorem for equal masses

We begin with the case of n bodies of equal mass, and show later how masses

enter the calculations.

First normalize the configuration so that the center of mass is at the origin,

and the distance from the center of mass to the mass furthest from the origin

is 1.

Let {r..} be the set of mutual distances of the bodies in an arbitrary central

configuration, arranged in increasing order. Let px , p2 be consecutive entries

in the list {r..} .

In a central configuration |^(.|/|x(.| = \A |/|x| V. , where A¡ is the accel-

eration vector associated with the z'th mass, x¡ G R the position of the z'th

mass. We find the bound on clustering by finding a lower bound for a particular
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I^J/lxJ , an upper bound for a particular |ylft|/|x¿|, then computing a value of

a function g(px,p2) such that \Ab\/\xb\ < \AJ/\xa\.

I. A LOWER BOUND FOR   |/4a|/|xJ

Choose xa , xk such that \xa - xk\ = px .

Define the cluster about xa as the unique set of bodies contained in the

intersection of B(xa,px) and B(xk,pA , where B(xt,/>.) is the closed disk of

radius p. centered at x..

Proposition 1. Any bodies not in the cluster about xa are at least p2- px from

Xa-

Proof. Any body not in the cluster is at least p2 from either xk or xa . If the

body is p2 from xk , it is at least p2 - px from xa (see Figure 2).

Figure 2.

Definition. Let A*a be the component of the acceleration vector Aa resulting

from the members of the cluster about xa .

Proposition 2. Let the cardinality of the cluster about xa be m. Then \A*a\ >

m/2(px)2.

Proof. A body in the cluster about xa is contained in B(xa ,pAn B(xk ,px).

The minimum possible force exerted on xa in the direction of xk by the body

is achieved on the boundary of B(xa, px ) n B(xk , px ). To see this consider the

rays from xa into the region. The force strictly decreases along these rays. The

boundary of the region has two parts: sx c B(xa,px), s2 c B(xk,px) (see

Figure 3).



CENTRAL CONFIGURATIONS 805

Figure 3.

The minimum along sx is seen to be at sx ns2, since the distance from xa to sx

is a constant p, ; so we seek to minimize cosa, when a is the angle between

the ray from xa to xk and the ray from xa to the body. (See Figure 3.)

For the minimum along s2, we consult the diagram (Figure 4) (let px — 1) :

Figure 4.

2 2
The component of the force we are interested in is (cosa)/I . Now / =

x2 + y2 , y = V2x - x2 so / = \/2xcosa = x/l, so (cosa)//2 = l/2\/2x,

which decreases strictly as x increases, so the minimum takes place for max{x}

for x G s2, which is s2 n sx , where I — px and a = n/3 . This completes the

proof of the proposition, since \A*\ > \A*a • [(xk - xa)/\xk - xj]|.
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Proposition 3.   \Aa\ > m/2(px) - (« - m)/(p2- px) , where n is the number of

bodies in the configuration, and m is the number of bodies in the cluster about

Proof. We have from Proposition 2 that \A*\ > m/2(px) . So the worst case is

that the remaining masses, which are at least p2~Px from xa , lie p2-px from

xa along the line joining xa and the center of mass. The estimate follows,   o

Now \xa\ < 1 from the normalization, so

\Aa\ ..      m n-m
>

x 2(/0       (P2-Px)
2-

II. AN UPPER BOUND FOR   |^4¿|/|xé|

First we choose xb . Consider x , a mass maximum distance (=1) from the

center of mass. If 7?(x , px) contains only x , then let xb = x . Otherwise:

Consider the convex hull of the masses contained in B(x., px). Let r, be

the ray representing the shortest distance from the center of mass to the convex

hull of the masses in 77(x., px). There are two cases here, both employ:

Proposition 4. A*b , where xb is a vertex of a convex hull of masses (the * here

signifies the acceleration resulting from the bodies in the convex hull), points

toward the interior of the convex hull.

Proof. Elementary. Each component vector is inside the convex hull (see Fig-

ure 5).

Figure 5.
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The two cases are:

1. r¡ meets the convex hull at a vertex. Then the convex hull lies beyond the

perpendicular to the endpoint of r., and we let xb be the body at the vertex

where r   meets the hull. So from Proposition 4, A*b is as in Figure 6.

2. r. meets the convex hull on a side. But then r, is perpendicular to the

side, since a unique intersection between a line and a circle must be perpen-

dicular to the ray joining the intersection and the center. So A*b , where xb is

either vertex on the end of the side, lies above the perpendicular to r . (See

Figure 6.)

Figure 6.

In either case we have:

Propositions.   \Ab\ < (n - \)/(p2 - px)  ■

Proof. The vector Ab must 'point at' the center of mass, since we have assumed

the configuration is central. So the best case is that A*b = 0 and the remaining

masses are along the line joining xh and the center of the mass—by choice of

px and p2 at least (p2-px) away.

Proposition 6.

\Ab\ < (n-\)/(p2-px)2

\xb\ ~ l~Pi

Proof. Proposition 5 and \xb\ > 1 - px by choice of xb .
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III. Computation of bound

We have that

\Aa\l\xa\ > m/2(px)2 - (« - m)/(p2 - pxf

and

\Aèi < («- l)/(p2- Px)

So we need to find when

m

2(PX)2     (P2-PX)2

for some choice of px, p2 given « , m

(1 - P\)(P2- P\)

!"/>,

n-m    >(n-l)/(p2- px)

!-/>,

so

so

so

so

(1-Pi)(p2-P\)

> n - 1

> « - 1

(1-/9.)

2(/>,)2
(p2-p)2m-2(px)2(n-m) > n - 1

:i-/>

2(/0
r(/°2 - ^i) w - (i -/?,)(«- w) > « - i

2(P,)
t(P2 - PxTm >(n-\) + (\- px)(n- m).

We know n > m , so we make the right-hand side as large as possible by drop-

ping the px term, so if

\_-_p

2(/>,
{(P2-Px)   >

2n - m - \

m

we have that MJ/|xJ > |¿l¿|/|x6| and the configuration cannot be central. This

gives

Theorem 1. Let X be a configuration of n equal masses, normalized so that the

center of mass is at the origin and |x;| = 1, where x¡ is the mass furthest from

the center of mass. Let px, p2 be consecutive entries in {r( }, the list of mutual

distances of X arranged in increasing order. Let m be the number of masses

in the px cluster about some x(   (m > 1 always—see below). Then if

2(/V

the configuration is not central.

¿(P2-Pl)   >
2n - m - \

m
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2 2
The fact that ((1 -px)/2(px) )(p2-px) —► oo as px —<■ 0 gives that we have

a neighborhood of the diagonal without central configurations for any given « ,

since if we fix « then some pi is at least 1/« .

From the definition of cluster we have that m > 1. So if we assume m — 1

the bound simplifies to:

-\ (P, - P\ )   >2n-2.
2(PX)2    2       '

3.  HOW MASSES ENTER THE COMPUTATION

We let mx be the smallest mass in X, m2 the largest, and consider the worst

case for the estimates. Then

\AJ > (mx)2m _ (m2)2(n-m)

\xa\ -  2(px)2 (p2-px)2

This is where the smallest masses are in the cluster about xa , the largest outside

the cluster. Similarly,

\Ab\ <((m2)2(n-\))/(p2-px)2

\xb\ ~ (l-0i)

so the computation begins with

(mx)2m     (m2)2(n-m)     ((m2)2(n- l))/(p2-pxf

2(PX)2   '      (P2-Px)2 l~Pt

Continuing as before gives

(!-/>,

2(/V2i

so we get

(l-/>,

\m(mx)2(p2 - px)2 - (m2)22(px)2(n - w)] > (w2)2(« - 1),

(m(mx)2(p2 - /?,)2) - (1 - /?,)(« -m) > n - 1
~v2i   \r\i

and so if

2(m2)2(px)2

(1 - P\)(P2- P\? (mx)2     2n-m-\

2(px)2 (m2)2 m

the configuration is not central. This gives:

Theorem 2. Let X be a configuration with masses mx, ... ,mn. Let m2 =

max{m;}, let mx = minl«^} . Otherwise assume the same hypotheses as Theo-

rem 1. Then if

\- PX)(P2- P\)2 ímj\2 > 2n-m-\

2(px)2 \miJ

the configuration is not central.
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Spatial configurations. As mentioned in the introduction, the arguments go

over to spatial configurations with hardly any changes, and give the same esti-

mates. The lower bound on MJ/|xJ employs a region between intersection

spheres. For the upper bound on |y4è|/|xé|, one shows that A*b is restricted to

a half space (instead of a half plane) some distance from the center of mass.
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