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A TRÜDINGER INEQUALITY

ON SURFACES WITH CONICAL SINGULARITIES

WENXIONG CHEN

(Communicated by Jonathan M. Rosenberg)

Abstract. In this paper, the author establishes an isoperimetric inequality on

surfaces with conical singularities, and by using it, proves a Trüdinger inequal-

ity with best constant on such surfaces. The best constants of the Trüdinger

inequality are also found for a class of "symmetric" singular matrices.

0. Introduction

Recently Troyanov [1] systematically studied the surfaces with conical sin-

gularities, the singularities Picard considered. In order to prescribe Gaussian

curvature on such surfaces, he proved the following Trüdinger inequality:

(0.1) feb"2dA<cb
Js

for all u G Hl(S) satisfying ¡s\Vu\2dA < 1 and fsudA = 0 and for all

b < b0. Where S is a compact Riemannian surface with conical singularities

of divisor ß = J2 ßjXj, dA is the area element of S ,cb isa constant related to

b and b0 = 4n min({ 1,1 +ßA . Although he claimed (0.1 ) to be true for b = bQ,

it seems that he is unable to guarantee, by his method (Holder inequality), that

{cb} is bounded as b —► b0 in the case b0 < 4n. Hence, there are still some

problems remaining unsolved:

(1) If (0.1) is true for b = b0<4n?

(2) Is b0 the best constant?

(3) (Posed by Troyanov) If the metric of the surface 5 is invariant under

the action of some isometry group G, can the constant b in (0.1) be larger

than b0 for the class of t7-equivariant functions? What is the best value of b

in this case?
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In this paper, through an entirely different approach, we answer the above

three questions completely. We prove the following:

Theorem I. Let S be a compact Riemannian surface with conical singularities of

divisor ß = J2 ßjXj,    b0 = 4n min(.{ 1,1 + /?(.}. Then the Trüdinger inequality

(*) iebou2dA<c

holds for all u G 77 (S) satisfying ¡s |Vw| dA<\ and JsudA = 0. Moreover
b0 is the largest possible constant, that is, if b > bQ, then there exists a sequence

{uk} c Hl(S) with ¡s\Vuk\2dA < 1 and ¡sukdA = 0, but ¡sebl?k dA -» oo

as k —* oo.

Theorem II. Let G be some group of isometries on S, G = {gx,g2, ... ,gs} .

Let I(x) be the number of distinct points in the set {gx(x), g2(x), ..., gs(x)},

Jo = minies 7M and ao = 4n    mm,{/(^i)(1 + ßi)J0} ■ Then

(**) iea°u2dA<c

holds for all u G HG = {v g H](S)\v(gk(x)) = v(x), k — I,... ,s} satisfying

fs \Vu\ dA< 1 and JsudA = 0. Moreover, aQ is the best constant for (**) to

be true.

The proof of the theorems relies on an isoperimetric inequality on such sur-

faces.

In §1, based on the known isoperimetric inequalities on smooth surfaces,

we proved a sort of isoperimetric inequality on the Riemannian surfaces with

conical singularities.

In §2, using the isoperimetric inequality, thanks to the idea of Chang and

Yang [2], we prove the inequality (*). Then we find a counter example to show

that b0 is the best constant. And by our approach Theorem II follows easily.

1.  AN ISOPERIMETRIC INEQUALITY

ON SURFACES WITH CONICAL SINGULARITIES

In this section, in order to have some understanding of the surfaces with

conical singularities, we first introduce two different local definitions of conical

singularities, the relation between them and the global definition of such sur-

faces. Then we will prove a sort of isoperimetric inequality on these kinds of

surfaces.

Let S be a surface, £ a discrete subset of S and S0 = S \ I. Assume that
2 2

dsQ is a Riemannian metric of class C   on S0.

Definition 1.1 [1]. We say that pel is a conical singular point of angle 6 if

there exist

(a) a neighborhood U of p and a number a > 0,
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(b) a diffeomorphism of class C1 : h : (0, a) x R/0Z -* C/n = U \ {p}

(c) a continuous function g: [0,q) x R/0Z <-* R satisfying the following

conditions

(1) h(r,t)^p as r-^0;

(2) for any t, the function:  r—>g(r,f) is of class C ;

(3) £(0,/) = 0 and dg/dr(0,t) = l for all r;

(4) (\/g)d2g/dr2 is continuous on [O,a)xR/0Z;

(5) h*ds¡ = dr2 + g2(r,t)dt2.

Definition 1.2 [1], We say that p G X is a singularity of order a if there exist a

neighborhood U of p, a homeomorphism /: 77 = {z e C| |z|< \} —. U and

a continuous function u: B —> R, such that

(1) f(0)=p, f\B\iQ\ is a diffeomorphism

(2) w|B> r0,  is differentiable of class C

(3) fds¡ = e2u\z\2"\dz\2.

2 1
Proposition 1.3 [1]. Let S be a Riemannian surface of metric ds0   with C

curvature. Then a point p on S is a singularity of order a > -1 if and only if

p is a conical singular point of angle 8 = 2n(a + 1).

Now comes the global definition of the surfaces.

Definition 1.4 [1]. A Riemannian surface with conical singularity is a triple

(S, ß, ds2) satisfying the following

(a) 5 is a compact Riemannian surface;

(b) ß is a divisor > -1 , i.e. a function: 5^R with discrete support;

(c) ds   is a conformai metric with bounded curvature and any point p G

supp ß is a singularity of order a = ß(p).

•s

In the following we assume (S, ß, dsQ) is a surface with conical singularities

as defined above. Let suppß = {x,,x2, ... ,xm} and /?(x;) = ßi. We also call

S a surface with conical singularities of divisor ß = l,ßjxj. Let ß0 = min{/?;}

and 60 = 2n min{ 1,1 + ß0} .

Let y be a simple closed curve separating S into two regions Sx and S2

with A = area(5,) < area(5'2), and L(y) the length of y. We are going to

prove the following isoperimetric inequality:

Theorem 1.5. There exist constants K, 3, e0 > 0, such that

(1.1) L2(y)/A>260-KA,        forA < 3

(1.2) L2(y)/A>e0, for all A.

Proof.
Part I. In order to verify ( 1.1 ), we will separately consider the following three

possibilities:

(a) xt ^ 5, , for all i = 1,2, ... , m ;
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(b) x; G Sx , the interior of Sx , for some i ;

(c) x¡ € y, for some i, but no x; G Sx .

Case (a). Let N (SA = {x G S\ dist(x, Sx ) < n} . Choose n > 0 so small that

Xj £ N (Sx) for all i = \ ,2, ... ,m . Now (N (Sx ), ds0) is a smooth manifold

with bounded curvature. By the known result of isoperimetric inequality on

smooth surfaces (e.g. cf. [3], Theorem 6.), one can easily see that

L2(y)/A>4n-KA>260-KA,       for A small

where the constant K can be chosen as the upper bound of the curvature on

Case (b). For sufficiently small A , we may assume that Sx contains only one

singularity, say x, of order /?, . By the definition of (S,ß,ds^), there is a

neighborhood U of x(, a homeomorphism /: B = {z g C| \z\ < 1} —► U and

a continuous function u: B -* R, such that

(1) /(0) = x, , f\B\,M is a diffeomorphism;
2

(2) «|mr0i  is differentiable of class C ;

(3) fds20=e¿tt\zr\dz\\

Let 0j = 2n min{ 1,1 + ßx} , we want to show that

(1.3) L2(y)/A>26x -KA,       for A small.

We may assume that L (y)/A < 20, , otherwise we are done. And under this

assumption we can let A be so small that S, C U. Write D = f~ ' (S. ). Then

f   2"iLe   |
JD

,x    K-    V    .       "'"V     ̂     —   J V^p

\2ßijdzAdz-

and

L(7)= le"\zf[\dz\       where z = \/^T.
JcJO

First we consider the case -1 < ßx < 0. Define a mapping w = w(z) from

z-plane to tzj-plane by

,   ,       2^    ej2n
w{z) = -s-z

2/? 2
Then by a straightforward computation, it is easy to see that  \z\    \dz\    =

\dw\ , and \z\ ß' dz A dl = dw A d.w.

Let D = w(D), then

= [ e2uiz{w))(i/2)dwAdw
JD

and

L(y) =
'w(dD)

T  I      \ f "(Z(UI))| J I
L(y) =        ^ e \dw\

Jw(dD)
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iß ~
Let w = re   . Without loss of generality, we may assume that w(dD) in

iD-plane can be characterized by

r = f(0),       O<0<0,

and write v(r,6) = u(z(w)), then

re> fW> -, , m
(1.4) A= /       e2v(r'e)rdrdd

Jo   Jo'o   Jo

and

(1.5) L(y)= [e'ev(m>6)

Jo

1/2

(f(8))2 + f2(8)      dO.

In order to compare A with L(y), we try to exploit some known isoperi-

metric inequality on w -plane with some smooth metric. To this end, we first

relate w(dD) to a closed curve on w-p\ane by the equation

f(6) = f(66x /2n)       for 0 < 0 < lit.

It is obvious that the curve y defined by

r = f(6),       0<6<2n

is a simple closed curve on w -plane.

Represent w(dB) by the equation: r = g(d), 0 < 0 < 0, . Let £(0) =

g(66x/2n), 0 < 0 < 2n. Denote G the region on t/j-plane enclosed by the

curve: r = g(9), 0 < 0 < 2n . Obviously, y is a closed curve in G. Let the

metric on G be defined by

,~2 2v(r,ee,/2n).,     ,2 ... W
ds  = e \dw\  ,       with w = re  .

-i'/2

dd

2
Then on the manifold (G,ds ) the length of y is

(1.6) L(y)= r,"(/(ö)'ee'/2'r)[(/(0))2 + /2(0)
Jo

and the area enclosed by y is

,,  n\ 7        f2"   ff(e)    2v(r,00t ,2n)     ,     ,a
(1.7) A = /      /       e rdrdd.

Jo    Jo

We will prove that the curvature K(w) of (G,ds ) is bounded. Now let us

assume this fact for a moment, and set K = supG^(u;). Then by a known

result concerning isoperimetric inequalities (e.g. cf. [3] or [4]) for smooth

surfaces, we have

(1.8) L2(y)/À>4n-KÂ.

Taking into account ( 1.4)—( 1.7), by a change of variables and straightforward

calculation, one easily finds that

(2n/6AL(y)>L(y)       and       À=(2n/9AA.
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And this, together with (1.8), lead to our desired inequality

L2(y) >26XA-KA2.

Now in order to complete the proof of (1.3), what is left to be done is to

show that the curvature of the manifold (G ,ds2) is bounded.

In fact, let K0(x) be the curvature of (S,ds^), then by Definition 1.4,

(1.9) KQ(x) is bounded.

In the neighborhood 7/ of x, , we can write (cf. [1])

(1.10) K0(f(z)) = -Azue-2u\z\~m

where Az = 4d2/dzdz.

In the domain w(B), the image of the unit ball B on z-plane, consider the

metric
j   2 2u(z(w)),,     ,2
ds  =e \dw\

with the Gaussian curvature K(w). Then by the formula

TSI \ A /       / \1       —2U(Z(W))
K(w) = -Awu(z(w))e

as well as (1.10), one can easily derive that

K(w) = K0(f(z)).

While by the definition of ds and ds , it is easily seen that there is a constant

c, such that

(1.11) K(w)<cK(w).

Now (1.9) and (1.11) imply the existence of a constant K, such that

K(w) < K       for all w G G.

Moreover by (1.9), such a K can be chosen to be independent of the neighbor-

hood U we consider.

Similarly, one can show that the inequality (1.3) holds for /?, > 0.

Finally, note that 0, > 0O, we have completed the proof of (1.1) for case

(b).

Case (c). Again let A he so small that there is only one singular point, say x, ,

belongs to the boundary of Sx and no singular point is in the interior of Sx .

Let the domain D on z-plane and the mapping w from z-plane to w -plane

be the same as in Case (b). Then it is obvious that w(dD) is a closed curve on

w-plane. By the known isoperimetric inequality on smooth surfaces we have

L2(y)/A >4n- KA.

This implies (1.1).
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Part 2. Inequality (1.2) is the easy consequence of (1.1) and the following

two obvious facts

( 1 ) The area of S is finite.

(2) If there is a sequence {yk} with L(yk) —► 0 as k —» oo, then Ak , the

smaller area enclosed by yk , goes to 0 as k —► oo.

In fact, suppose that (1.2) were false.   Then there would exist a sequence

{yk} and the corresponding {Ak} , such that

L (yk)lAk "~*0>        asrc ^oo.

But Ak < (j) area(5'), one must have L(yk) —► 0 as k —» oo, and this implies

Ak —► 0. Now by inequality (1.1), we see that for k sufficiently large,

L2(yk)/Ak > 0O

a contradiction. This completes the proof of Theorem 1.5.

Remark 1.6. One may prove a stronger version of Theorem 1.5. However, to

our goal of proving the Trüdinger inequality, the theorem is enough.

2. The proof of Theorems I and II

Let 77 (S) be the Hubert space of functions u that satisfy

j (\Vu\2 + u)dA <+oo

( 1 ) The proof of the Trüdinger inequality

(*) e"
Js

dA<C
s

is similar to that of Chang and Yang [2] with minor modifications. However,

for completeness, we would rather sketch the whole proof here.

The following well-known calculus inequality plays an important role in the

proof.

Lemma 2.1 (Moser) [5]. Suppose w(t) is a monotonically increasing function

defined on the real line (-oo, +00) satisfying

/ + OO /-+00w(t)dt<land w(t)p(t)dt = 0
-00 J—00

with p(t) a positive continuous function satisfying

/+00

p(t)dt= 1
-00

for some constant cQ . Then

/+°°     2,

ew    p(t) dt is uniformly bounded.
-00
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The proof of inequality (*) is divided into two steps. Step I deals with

C functions u defined on S which have only isolated nondegenerate critical

points, i.e. Morse functions. This will be done by change of variables based on

the distribution function of u and using Lemma 2.1 above. In Step II we will

use an approximation argument to show (*) for all functions in 77 (S).

Step I. Let u be a C   Morse function defined on S. For each real number

M,let
LM = length of the level curve {u = M}

AM — area of the region {« < M}.

It follows that

f i r+oo tJ- i- r+oo

X'v"'dA >-L äjjmäM "*LudA -L MdA«-

Then the assumption in Theorem I becomes

/+oo r2 r+oo

„ztfnr"'**   and   LMdA«'0

and the inequality we are going to prove becomes

<2-5) L bM1   ,  .        .   „
e      dAM < C.

Now again let y be a simple closed curve on S enclosing area A , L(y) the

o2)
2

length of y and |5| the area of the surface (S,ß,dsA. Define

inf(L2(y)/^) ifO<^<|S|/2
1(A) = {    7      -

inf{L2(y)/(|S|-/l)}    if \S\/2 < A< \S\

where inf is taken among all such curves which enclose a region with area A .

Then by Theorem 1.5, we have 1(A) > e0 for all A and

1(A) >20o - KA for A small

1(A) >20o - K(\S\ - A)       for |5| - A small.

Choose a C   function <p(A) such that

I(A)/\S\><p(A)>e0/\S\       for all A,

and

<p(A) = |

Obviously,

(20o - KA)I\S\ for A small

[20o - K(\S\ - A)]/\S\   for \S\ - A small.

(2.6) L2M > <p(AM)AM(\S\ - AM)        for any AM G (0, \S\).



A TRÜDINGER INEQUALITY ON SURFACES WITH CONICAL SINGULARITIES 829

In order to apply Lemma 2.1, we now make a change of variable by defining

t G (-00,00) as a function of M :

(Au _

t = b [<p(AM)AM(\S\-AM)]~ldAM
J\S\/2

and w(t) = y/b-M, p(t) = (dAM/dt)(\/\S\). Then (2.4) and (2.6) imply (2.1)

and it is obvious that f*™ p(t) dt — 1. The verification that such a t is well

defined and p(t) < cQe~''' can be found in article [2]. Now by Lemma 2.1,

for b < b0, we arrive at (2.3), then (2.5), and then the inequality (*). This

completes Step I.
1 2

Step II. Note that for any u G 77 (S), there exists a sequence of C functions

{uk}, uk —► u in 77 (S), it is easily seen that (*) holds for all u G 77 (S).

(Cf. [2] or [6] Theorem 2.47.)

(2) The proof that b0 is the best constant in the inequality (*) is a special

case (G = {id}) of the proof of the second part of Theorem II.

Proof of Theorem II. From the proof of Theorem I, it can be seen that in order

to prove the Triidinger inequality (**) for the constant a0, one needs only to

show that for functions u G HG ,

(2.7) Lm/Am ^ao~ Kam >        as Am smalL

In fact, let DM be the region {u < M} . Then for small AM we may assume

that each connected component of AM contains either only one singular point

or no singular point. It can be seen easily that there is an open set D in DM such

that DM = \Ji=x g ¡(D) and either the elements in {gx, (D), ... , gs(D)} are dis-

joint or identical. Assume that there are k disjoint sets in {gx(D), ... ,gs(D)}

denoted by 7), ,D2, ... ,Dk. Then DM = \J*=xDr Let ?i and Ai be the
boundaries and areas of D{, respectively. Then

L(yx) = ■ • ■ = L(yk),       and      Ax = --- = Ak.

By Theorem 1.5, one can easily infer that L (yj)/Aj > b0 - KA{ with

4n, if D contains no singular point

47rmin{l + ßA,    if D contains singular points xx,..., x( ,

i = 1,..., i0.

Consequently,

(2.8) L2M/AM = kL]/Ax > kb0 - kKAx = kbQ - KAM.

(i) If b0> 4n , then since k > jQ, we have

kbQ = 4nj0 >a0 = 4;rmin{7(x/)(l +ßj),j0}.

(ii)  If bQ = 4n(l + ßj) for some z, then since k > 7(x() we also have

kb0>4nl(xt)(\+ßt)>a0.

Therefore (2.8) implies (2.7) and we have proved the first part of the theorem.

h
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In order to show that a0 is the best constant in (**), we are going to construct

a sequence of functions {uk} c 77G , such that

/ \Vuk\2dA < 1,       and        ¡ukdA = 0
Js Js

but

/.
e "* dA —► +00       as k —» oo

is

for any b > aQ.

(1) Assume I(xA(l+ßA = min{7(x1)(l+A,) ,70} . i.e. a0 = 47r/(^i)(1+/?i) •

Let 0O = 2^(1 + /?,). For simplicity write 7 = 7(x,) and let px,p2, ... ,pl be

the 7 distinct points in the set. {gx (x,), ... , gj(x,)} .

By [1] (Also cf. Definition 1.1.), there exist a neighborhood U of px , a

number a > 0 and a diffeomorphism

MO,a)xR/0oZ-+c/o=z7\{7M

such that

h* ds0 = dr +g(r,t)dt

where g is a continuous function:   [0,q) x R/0oZ —► R satisfying (l)-(5) in

Definition 1.1. As a consequence

(2.9) l-g(r,t)/r    is bounded
r

Let 0 < A < p < a, define

' yJln(p/X)/e0   for 0 < r < X

ux(r) = \     jn{-Plr) for X < r < p

0 for p < r.

Let |x - p\ he the distance from point x to p on S. Then by (2.9),

(2.10) J\Vux(\x-px\)\2dA

/•Go   r

JO    Jl
—g(r,t)drdt

<

o

1

dJn(p/X)r

ln(p/X)
Í  \(\+cr2)dr

= 1 + c(p2 - X2)/2 ln(p/X) ^1       as X — 0.

Also by (2.9) and an elementary calculation, we have

(2.11) fux(\x-px\)dA<   ¡° ¡" ux(r)g(r,t)drdt
Js Jo   Jo

rp

< c0n /   uAñrdr^O       as X -► 0.90 /   ^(Orz/z
^o
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In order to show that

(2.12) Í eb{uMx~p'l))2 dA^+00       asA^O,    for any b > 4n(\ + ßx)

we apply (2.9) again to get g(r,t)/r -»1 as r -* 0. Hence, there exists X0 > 0,

such that for r < X0

g(r,t)>r/2.

Then for any X < X0

(2.13) / eb{uMx-p[l))2 dA > 0o/2 [\p/X)b/e°rdr
Js Jo

= (eo/4)pb/e°X2~b/eo - +00       as X -+ 0

because b/6Q > 2 for b > 4n(l + ßx).

Now let vx(x) = E;=i UÁ\X -P¡\).

vAx)-\kfsvJ.(x)dA
v,(x) =

1/2
(fs\Vv,\2dA)

It is easy to verify that vk(x) G HQ, i.e. for any isometry transformation g on

S, vx(gx) = vk(x). By (2.10) and (2.11) we have

v, = rl/\ + o(i)

where o( 1 ) —> 0 as A —> 0.

For any a > a0 , let a, be a constant that a > ax > aQ , then for A sufficiently

small

/ em~ï dA> [ eM,)i'1 dA> [ e^^^-"^ dA.

Since íz,/7 > a0/7 = 47r(l + ßx), by (2.13) we know that the right-hand side of

the above inequality goes to +oo . Therefore

Lem'x dA —> +00       as X —> 0.
is

(2) For the case j0 < min.{7(x()(l + ßt)}, choose a point i0 on S, such

that {g(xx), ... ,g(x0)} has exactly j0 distinct points. If we take x0 instead

of x, in the proof of Case (1), then the proof follows similarly.

This completes the proof of Theorem II.

Acknowledgment

The author would like to thank Professor J. Kazdan for his helpful discussions

and suggestions.

References

1. Marc Troyanov, Les surfaces riemanniennes à singularités coniques (preprint).

2. Sun-Yang A. Chang and Paul C. Yang, A sharp version of Triidinger inequality with Neumann

condition and a geometric application (preprint).

3. T. Aubin, Problèmes isoperimetriques et espaces de Sobolev, J. Diff. Geom. 11 (1976), 573-598.

4. R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), 1182-1238.



832 WENXIONG CHEN

5. J. Moser, A sharp form of an inequality ofN. Trudinger, Indiana Univ. Math. J. 20 (1971),

1077-1092.

6. T. Aubin, Nonlinear analysis on manifolds, Monge-Ampere Equations, Springer-Verlag, Berlin,

1982.

Institute of Mathematics, Academia Sínica, Beijing, People's Republic of China

Current address:    Department of Mathematics,   University of Pennsylvania,   Philadelphia,

Pennsylvania 19104-6395


