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THE SYMMETRY OF THE WEIERSTRASS GENERALIZED

SEMIGROUPS AND AFFINE EMBEDDINGS

FELIX DELGADO

(Communicated by Louis J. Ratliff, Jr.)

Abstract. The characterization of the property of complete intersection for

affine curves with one place at infinity in terms of the Weierstrass semigroup

can be generalized to the case of several places at infinity.

Introduction

Let X be a locally complete intersection projective curve of arithmetical

genus g over an algebraically closed field k . For each regular point P G X(P G

X for short ) denote by v the discrete valuation of K(X) associated to P.

Let P, , ... , P^ G Xro„, and set v, = v„ . One can consider the affine coordinate
i u reg / Pi

ring of X' = X - {Px, ... ,Pd},A = T(X',c?x) and, on the other hand, the

generalized Weierstrass semigroup for the set of points {P,, ... , Pd} given by

r = {-(«, (/),..., vd(f))\f g a}.

If d — 1, T is the usual Weierstrass semigroup for P, . In [7] Sathaye proves

that X - {P,} is a complete intersection affine curve if and only if Y is a

symmetrical semigroup with respect to the element 2g - 1 . This fact gives an

analogy with the symmetry property proved by Kunz in [5] for the characteri-

zation of the Gorenstein curve singularities in terms of its semigroup of values.

In fact c = 2g becomes the conductor for such a Weierstrass semigroup and

c- \=2g-\.

In this paper we will prove that the result by Sathaye is also true for d > 1 if

one considers the concept of symmetry analogous to that given in our previous

paper [3] for subsemigroups of N associated with reduced curve singularities.

In [3] it is shown how the symmetry of the semigroup is equivalent to the

singularity being Gorenstein.
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Note that in [1, VIII], the Weierstrass semigroup of Px, ... ,Pd is defined in

a different fashion, as follows:

f = {(«,, ... , nd) G Zd\3f G K(X), (f)x = J2 n¡P^,

so one has f" = T n N  .

Notations. Let zz = (n,, ... ,zzd) g Z and J — {ix, ... ,ir} c I = {I, ... ,d} .

We will use the following notations:

Vy(zz) = V^  h , (n) = {me Zd\m¡ = n¡ Vz G J, zw. < «^ V; g 7} ,

d

V(zz) = (JV,(zz);       Vy(zz) = Vy(zz)nr;
i=i

and

V(zz) = V(zz) n T = {m G r|m  < zz  V/, and m. = zz(. for exactly one z'},

V(. (zz) = [J Vy(zz) -{me T\m¡ = n¡ ; zzz  < zz^ V/ ± z'}.

Remark. Assume that X is a projective curve of arithmetical genus g and

denote by X    the set of regular points of X . For each invertible sheaf 2? on

X there exists a divisor 7) = Yl[ n¡Qi with support in X , i.e., ß, G X for

all z, in such a way that Sf - 2f(D). In particular, if we assume that X is a

locally complete intersection the dualizing sheaf cox of X is an invertible sheaf

on X and we can take the canonical divisor K to be a divisor with support

in X corresponding to cox. In this case one also has the corresponding

Riemann-Roch formula:

/(D) - /(K -D) = deg(7>) + l-g.

If D = {(U¡,f¡)}¡€l is a Cartier divisor in X and P G X , we will denote

v (D) the value » (/.) if P G t/ . We will also use the usual notations to

denote the effectivity of D (D > 0), and the linear equivalency between two

divisors (D — D1).

As in the introduction, let Px, ... ,Pd e Xre&; if zz = (zz, , ... ,nd) e Z

consider the divisor D(n) = J2X n¡P¡, the invertible sheaf 2f(D(n)) and the

vector space of global sections of 5f(D(n)) denoted here by T(X,n). Also

set /(zz) = dimkT(X,n) and /(K-n) = dimk T(X,2f(K - D(n))). The

vector space F(X, zz) can be seen as the set F(X ,«) = {/ e K(X)\(f) + D > 0}

= {/ G A\v¡(f) > -n¡,i = 1, ... , d}. Finally, we will denote by ex, ... ,ed

the standard basis of Zd , i.e., e¡ = (0, ... ,0,1,0, ... ,0) eZd ( 1 in the i th

place).

Definition. Let n e Z , then zz will be called a relative maximal for Y if

V(n) = 0 and if for any J c 7 with #J > 2 one has Vy(zz) / 0 .
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Definition. The semigroup V will be said to be symmetric with respect to t if

it satisfies the following property:

"If zz G Zd then zz G T if and only if V(t - zz) = 0".

Remark. The nature of the Weierstrass semigroups is different than that of the

semigroups associated with curve singularities studied in [2] and [3]. However

if one considers -T = {(vx (f), ... , vd(f))\f e A} (in some aspects more nat-

ural than T ) then the sets Äy , Ay, A, ... considered in [2, 3] are related to

Vj , Vj , V for the semigroup Y, as follows:

Ay(-zz) = -V,(zz),       AJ(-n) = VJ(n),...       VneZd.

This fact motivates the above definitions. Thus these concepts of symmetry and

maximals are the same as in [3].

Remark. The Weierstrass semigroup Y satisfies analogous properties to those

given in [2, (1.2)] or [3, (1.1)] for the semigroups of values of curve singularities.

Namely one has:

-If zz,m e T, then Sup(zz,m) = (maxjzz, ,m,}, ... , max{zz¿,md}) e Y.

-If zz, m e T with zz; = m¡ for some z G 7, then there exists c eT such that

cr < max{zzr, mr}Vr e I (and the equality holds if nr^mr) and c¡ < n¡ = m¡.

On the other hand, using the Riemann-Roch Theorem one finds other prop-

erties rather different than those of the semigroups of values, as for instance the

following one:

-If n eZd is such that YLn¡ > 2¿? tnen n eY and if ¿~2n¡ < 0 then

zz i Y.

In the same way as in [2] or [3] one can prove also the corresponding gener-

ation theorem:

Theorem. Let m e Z ; then m £ Y if and only if there exists a relative maxi-

mal nofY such that m e V(zz).

However, note that in this case the set of relative maximals is always infinite.

Proposition. With notations as above, if n = (nx, ... ,nd) eZ   then one has:

(i) zz G T if and only if f(n) = f(n - e() + 1 Vz = 1, ... , d.

(ii) vf(zz) = 0 ifandonlyiff(n) = /(n-e¡).
(iii) V(zz) = 0 if and only if there exists a divisor K1 ~ K on X such that

v¡(K') = n¡- l,V/ = 1, ... ,d and K' -£(«,- 1)P, >0.

Proof. The first statement is clear, because zz G Y if and only if there ex-

ists f e A such that -v¡(f) = n¡ for every i e I, so f e Y(X,n),f £

Y(X,n-e¡) and hence/(zz-e;) =/(zj)-l for every z'g7. Conversely, if there

exists f¡ e Y(X,n) - T(X,n-e¡) Vz = 1, ... ,d, then taking general elements

lx, ... ,kdek one finds / = D-*,/, S A such that / G Y(X, zz) - T(.Y, zz - e;)

for every i, so v¡(f) = -n¡ and zz G T.
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For the second statement, note that /(«)=/(n-e(.) + l if and only if

there exists /G T(X,zz) - Y(X,n-e¡) and this is equivalent to —(iz,(/), ... ,

vd(f))eVd(n).

For the last statement one has the following equivalences:

V(zz) = 0 <=> Vd[n - V e, ) = 0, Vz G 7

-^ej=/ zz-^e.|

t-"+Se') + 1 =/ÍK- n + J2ej)> v/€/

by the Riemann-Roch Theorem

S.\-Y[X,K " + Ee;)'V/-

This statement is equivalent to the existence of a divisor K' ~ K, namely

K' = (f) + K, in such a way that v¡(K') = n¡-l and K' - D(n - 1) > 0.

Theorem. Let X be a locally complete intersection projective curve of arithmeti-

cal genus g and X' - X- {P,, ... , Pd}, where P¡ e Xreg, Vz = 1, ... , d. Then

the following conditions are equivalent:

( 1 ) X' is an affine complete intersection.

(2) There exists a canonical divisor K such that supp(A^) c {P,, ... , Pd} .

(3) There exists a relative maximal x = (xx, ... ,xd) in Y such that J2 T, =

2g - 2 + d.
(4) There exists a = (ax, ... ,ad) eY such that Y,o¡ = 2g - 2 + d and Y

is symmetrical with respect to a.

Proof. The equivalence between (1) and (2) is a straightforward generalization

of the results in [6] (see also [7]) taking into account the corresponding ones

by Serre in [8]. On the other hand, the equivalence between (2) and (3) results

from part (iii) in the above Proposition.

Assume that there exists a relative maximal i in T such that Yl x¡ =

2g - 2 + d . We will prove that Y is symmetrical with respect to x . If zz G T

then V(t - n) - 0 since otherwise, if one takes m e V(t - zz) then one would

have m + n e V(t) , which is a contradiction. Conversely, assume V(t - n) =

0, and take a canonical divisor K such that supp(Tf) c {Px, ... ,Pd} and

v¡(K) — tí. - 1 for any i e I. One can also take (by (iii) of the above Proposi-

tion) K' ~ K such that v¡(K') = %. - zz, - 1 Vz and K' - D(x - n - 1) > 0 .

Thus K' - (f) + K with / g K(X). Now, the divisor K is given in the open

X' = X - {Px, ... , Pd} by 1 G Y(X' ,cfx) so K' is given in the same open by

(X',f), but K' - D(x - n - 1) > 0 implies in this case / G Y(X' ,cfx) = A .

Since for any i one has -v¡(f) = v¡(K) - v¡(K') = (x¡ - 1) - (x¡ -n¡-\) = n¡,

one gets n eY. This proves (3) => (4).
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Now, assume that there exists a = (ax, ... ,ad) e Y such that Y is sym-

metrical with respect to a and Yl a¡ — 2g - 2 + d. One must only prove

that V(cz) = 0, because the condition Vy(ff) / 0 for any J c 7 with

#7 > 2 is trivially satisfied. For this, assume that there exists zz e V(<r) ;

then V(cr - zz) = 0 which is contradictory to the fact 0 G V(er - zz). This

completes the proof of the theorem.

Remark. Note that statement (3) in the above theorem does not provide a finite

procedure to test if the affine curve X' = X - {P,, ... ,Pd} is a complete

intersection because the number of elements x in Y suchthat 2Jr¡ — 2g-2+d

is not finite. In this sense it would be interesting to give an answer to the

following question: Does there exist a natural number 7 (depending on the

genus and the number d ) such that X' is an affine complete intersection if and

only if there exists a relative maximal x in Y such that J2 x¡ = 2g - 2 + d and

¿j\*i\ < 7 ? Note that the above question can be stated in terms of a canonical

divisor or, for smooth curves in terms of a differential form on the curve.
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