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CONVERGENCE OF DIFFERENCE APPROXIMATIONS

AND NONLINEAR SEMIGROUPS

SHIGEO KANDA

(Communicated by Palle E. T. Jorgensen)

Abstract. We give a convergence theorem for the difference approximation

for the evolution equation (d/dt)u(t) e Au(t) and a generation theorem of

nonlinear semigroups for "directed" dissipative operators A in a real Hilbert

space.

Introduction

In this paper we consider the evolution equation

(DE) (d/dt)u(t)GAu(t),       tG[0,T)

for a given (multivalued) nonlinear operator A in a real Hilbert space.

After a pioneering work of Kömura [4], many authors have treated the gen-

eration of nonlinear semigroups having dissipative or codissipative operator as

generators. Our main purpose is to introduce a notion of directed L-dissipative

operators as a generalization of codissipative operators and to give a conver-

gence theorem for difference approximations for (DE) and a generation theorem

of nonlinear semigroups through it. In § 1 we state definitions and a convergence

theorem for difference approximation for (DE) and the proofs are given in §2.

In §3 we give a generation theorem of nonlinear semigroups through the con-

vergence theorem in § 1.

1. Definitions and convergence of difference approximations

Let 77 be a real Hilbert space with inner product (•, •) and norm || • ||. Let

A be a (multivalued) operator in 77 with domain D(A) and range R(A). We

say that A is directed L-dissipative if the following conditions are satisfied:

(i) for every X > 0, (1 - XA)~l is a single valued operator.

(ii)  (x -y ,x -y) < L(\\x -y||)||x - v|| for x, y g D(A) , x G Ax and

y G A y , where L is an increasing continuous function such that L(0)
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/'Jo

equals zero and satisfies the condition
-i

dt/L(t) = oo.
'o

(iii)  {x - x", Xx') < 0 for X > 0, x G D(A), x G Ax, x - Xx G D(A)

and x" G A(x - Xx').

We note that the condition (iii) is an analogue to that of "temporal analytic-

ity" in Furuya [2]. Our main theorem is the following:

Theorem 1. Let A be a directed L-dissipative operator in 77 satisfying the range

condition

(Rl) R(\-XA)dD(A)      forallX>0.

Let T > 0 and T - nhn , where n is a positive integer. Let u0 G D(A). We

define the simple functions un on [0,T] by

un(t) = (1 - hnA)~ku0      for tG((k- \)hn , khn]

and un(0) = u0. Then {un(t)} converges uniformly on [0,T] as n —► oo and if

we let u be thelimit function of{«„}, then u is a Lipschitz continuous function

with Lipschitz constant \Au0\ = inf{||z|||z G Au0}, i.e.

(1) \\u(t) - u(s)\\ < \Au0\\t - s\      fort,sG[0,T].

2. Proof of Theorem 1

We begin with the following lemma:

Lemma 2.1. Let A be a directed L-dissipative operator in 77 satisfying the

range condition (Rl). Let x0, y0 G D(A). Let h, k be positive numbers

such that h = /k, where / is a positive integer. Put xn+x = (1 - hA)~ xn

and ym+x = (1 - kA)~xym for n,  m = 0,1,2,... .  Let M — max(|^x0| +

|^y0|, M^ol2), where \Ax\ s inf{||x'|||x' G Ax}. Let e be a given positive

number. If \\xn - y/n\\ > e and M h < min(e/2,L(e)e), then the following

estimate holds:

(2) ||*„+1 -v/(n+1)|| - \\xn-y/n\\ < 3hL(\\xn-y/n\\ + Mh).

Proof. Let x'n+x g Axn+X . Let p be a nonnegative integer. Choose y^,„+1)_p G

^y/(n+1)_p such that y/(n+x)_p =y/(„+1)_p_1 + ky',(n+l)_p . Then

(3) \\xn+x-pkx'n+x-y/[n+X)_p\\2

= \\xn+x - (p + l)kx'n+x -y/(n+X)_p_x+k(x'n+x - vv^,,^)!!2

= ll^+1 - (P+ l)K+i -y/{n+i)-P-f

+ 2^(Xn + l ~y/(n+\)-p>Xn+\ ~y/(n+\)-p)

-(p+ l)k2\\x'n+x -y'/{n+X)_p\\2 -Pk2\\x'n+X||2

+ Pk2\\y'/{n+x)_p\\2      iorp = 0,1,2,...,/-!.
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Choose x'n+x G Axn+X such that xn = xn+x - hx'n+x . Then, for any x'n G Axn =

¿(xn+x - hx'n+x),

n ^   /    ' '        '      \ il    '       II2        /    '        '      \

>iK+iii2-iKiiiK+iii'
Thus the following estimates hold:

(4) llOl < Kll < Mx0|.

(5) \\xn+l-xn\\ = \\hx'n+l\\<h\Ax0\.

(6) IK+i-^+D-pll-K-^IH

<- iK+i - *„n + ¿2 \\y,n+i-y/n+j-\\\
/=1

< h\Ax0\ + (/-p)k\Ay0\

<Mh       forp = 0,l,2, ... ,/.

From (3), using (4), (5), (6) and (ii) we have

IK+, -Pkx'n+X - y/{n+x)_p\\2 - IK+1 -(p + l)kx'n+x-y/{n+X)_p_x\\2

< 2kL(\\xn-y/n\\ + Mh)(\\xn-y/n\\ + Mh) + Mpk2.

Adding these inequalities for p = 0,1,2, ... , / - 1, we get

\\xn+x-y/(n+X)\\2-\\xn-y/n\\2

< 2hL(\\xn -y/n\\ + Mh)(\\xn - y/n\\ + Mh) + M/(/ - l)k2/2

<2hL(\\xn-y/n\\ + Mh)(\\xn-y/n\\+Mh) + Mh2.

In addition, if \\xn - y/n\\ > e > 2Mh , then using (6) we have

K+i->V(,,+i)ll2-IK->yJ2

= (11*,,+, -y/{n+1)\\ - IK->vJ)(lk+i -^(«+1)11 + IK->vJ)
> (\\xn+x -y/in+X)\\ - IK -y/n\\)(2\\xn -y/n\\ - Mh)

> (IK+, -»<„+i)ll - IK ->vJ)(IK -y,JI +m.

Thus, if \\xn -y/n|| > e > 2Mh and M h < L(e)e, then

^+i- ^/(«+i)H ' ' IK   jv«I

<2hL(\\xn-y/n\\ + Mh) + Mh2/e

<2hL(\\xn-y/n\\ + Mh) + hL(e)

<3hL(\\xn-y/n\\ + Mh).
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Lemma 2.2. Let A, xQ, and y0 be as in Lemma 2.1. Let T > 0 and T = nhn ,

where n is a positive integer. Then for any e > 0 there exist a positive number

ô - ô(e) and a positive integer N = N(e, x0 ,y0) such that

I--A
n fn

-/«

^o <£

for ||x0-y0|| <S, n > N, / = 1,2,3, ... , and re [0,71.

Proof. Given e > 0, choose n = n(e) > 0 such that

dy

, L(y)f > AT.

Setting ô = ö(e) = n/3, choose x0 , y0 e D(A) such that \\xQ -y0\\ < ô . More-

over, choose a positive integer N = N(e,x0,y0) such that MhN — MT/N <

min(f//2, L(e)e). For simplicity, put

a¡(t) (i-^)-V(i-^)~%for t G [0, T].

Let n > N and assume that a"n(t) > e for some t G [0,71.  Since an0(t) =

IK _ J^oll - nl^ anc* by noting (6) we have

> n-n/2 = rj/2,

there exists a nonnegative integer k0 < k < n such that

%(*) < ^^     and     a"k^ - il1 f0r k0<k ^n-

For r G (0, T], putting /¡ = t/n we have

¿j, f<U)+Mh    dy

h L(y)    Jal (t)+Mh L(y)

<  yi <£+.(*) + Mh - (ank(t) + Mh)

k=k0

n-\

L(a"k(t) + Mh)

< ^ 3/2 = 3(« - k0)h <3t<3T,       by Lemma 2.1.

k=ka

This is a contradiction. Hence a"(i) < e for n > N and t g[0,T].

Proof of Theorem 1. Given e > 0, put a(e) = e/2(|^«0| + 1).   Put x"k =

(1 -hnA)~ku0.  Let n, m > 2T\Au0\/e = A^e). In the case í G [0,ó(e)],
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taking the integer kn so that / e ((kn - \)hn, knhn], we obtain

Kfi

Il /¿\ Il M      n II W      « n        \

\\un(t) - "0|| = IK„ - w0ll =   l^(Xj - Xj_x)
7=1

k„ k„

< J2\\XJ-XJ-l\\^Y,hn\Au0
/=1 j=\

< knhn\Au0\ < (t + hn)\Au0\

< e/2 + e/2 = e.

Similarly we have

Thus

\ujt)-u0\\<e.

KO - "«(OH < ll"„(0 - "oil + K - "mWII <e + e = 2e
for re[0,r5(e)] and n, m>Nx(e).

In the case t G [â(e), T], by Lemma 2.2 there exists a positive integer N2(e)

such that

i-UYk\,-U-^-A -mk„

< e   and   hn\AuQ\ < e

for t G [¿(e), 71 and n , m > NJe). Thus

Í"„W - «.«(oil = ll(i - M) S - (i - KmA) fcnM"ol

<
-mi„

+
,—mk„ k,in

^-hnmA)—"u0-(l-hnmAr-Ul

< * + ii(i - ^rmS - (i - >wr^"oi
m/c„
E,    »m nm

(*;     -*jwi

j=k„m + \

mk„
. X—^     n    nm nm ,,

<e+     L     H*;     -*;-lH
j=k„,„ + l

< e + mhnm\Au0\ =&+ hn\Au0\ < 2e

for t G [3(e), T] and n , m> N2(e). Similarly we have

\\unm(t)-um(t)\\<2e

for t G [3(e), T] and n , m > N2(e).

Putting /V(e) = max(/V,(e),Ar2(e)),

K00 - «m(0ir< 4e
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for t G [0,T] and n, m > N(e). Hence {un(t)} converges uniformly on

[0,71. Put u(t) = lim^^w^r) for t g [0, T]. For 0 < s < t < T, choose

integers j, k such that 5 G ((j - \)hn ,jhn] and t G ((k - \)hn ,khn]. Then

\\un(t)-un(s)\\ = \\xnk-xnj\\

k-\ k-\

<- 5ZiK+i-*rii<HAj^M0i
i=j i=j

< (k - j)hn\Au0\ < (t - s - hn)\Au0\.

Thus

||w(r) - u(s)\\ < (t - s)\Au0\       as n —> oo.

This holds for s = 0. Hence,

\\u(t) - u(s)\\ < \Au0\\t-s\       for all í,íe [0,71.

3. Generation of nonlinear semigroups

Let A be a directed L-dissipative operator in 77 satisfying the condition

(Rl). Following Benilan [1], we define an integral solution u to the Cauchy

problem:

J (d/dt)u(
CPT;un){

T    °'\ u(0) = u

(d/dt)u(t) G Au(t)       for t G [0, T), 0 < T < oo,

(0) - „0

as a continuous function on [0, T) with w(0) = w0 satisfying the inequality

(7) ||M(í)_Xo||2_||M(í)_Xo||2

< / {(^o' "(T) - xo) + Ldl"(T) - *oll)H"(T) - xQ\\}dx

for x0 G D(A), y0 G ̂ x0 and 0 < 5 < t < T.

It is easy to see that the limit function u as in Theorem 1 is an integral

solution to (CPT;uQ), and satisfies

(8) \v(t) - u(t)\\ - \\v(s) - u(s)\\ < fsL(\\v(x) - u(x)\\)dx,

0 < s < t < T, for any integral solution v(t) to (CPT ; v0). Such a solution is

called a mild solution of (CPT ; u0).

Lemma 3.1. Let u(t) = u(t,u0)  be the limit function as in Theorem 1, and

v(t) = v(t,vQ) be a mild solution to (CPT;v0), then

(9) lim     \\v(t,Vr.) - u(t,un)\\ = 0       uniformly on [0,T).
Il"o-"ol|-»0

In particular, if v0 = u0 then v(t) = u(t).

Proof. Putting 5 = 0 in (8),

(10) \\v(t) - «(i)» < K - «oil + f L(\\v(x) - u(x)\\)dx.
Jo
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Putting f(t) = ||v(0 - w(0|| and F(t) = \\v0 - «0|| + /0'L(||u(t) - u(x)\\)dx,
(10) is expressed as

(10') f(t)<F(t).

Thus F'(t) = L(f(t)) < L(F(t)). Hence,

íF{l)   _ds_= Ç  f'(x)  dx< r<

J\\vo-uo\\ L(s)     Jo  L(F(x))       - J0

'•t
dx = t.

'\\vo-uo\\

Since /0 ds/L(s) = oo, lim,,VB_u,,0F(t) = 0 uniformly on [0,T). So (9) is

obtained.

Lemma 3.2. Let  uQ G D(A).    Then there exists a unique mild solution to

(CPT;u0).

Proof. Since uQ G D(A), there exists a sequence {xn} c D(A) which goes to

«0 . Let u(t ,xn) be the limit function with initial value xn . By (9) we have

lim   \\u(t,x„) - u(t,x)\\ = 0       uniformly on [0,71.
n ,m—»oo

Putting «(0 = lim^^ u(t,xn), it is clear that «(0 is a mild solution to

(CPT;u0).

Next, letting v(t) be any mild solution to (CPT ;«0), using (9) again,

lim \\v(t)-u(t,xn)\\ = 0.
«—»oo "

Thus

IKO - «(Oil < ||ü(0 - u(t,xn)\\ + \\u(t,xn) - u(t)\\ - 0

as n —* oo. Hence, v(t) = u(t).

From Lemma 3.2, it is easily seen that there exists a unique mild solution

u(t,x) in (CP^ ;x) for any x G D(A). Then we have the following theorem.

Theorem 2. Let A be a directed L-dissipative operator satisfying the condition

(Rl). For each xgD(A), let u(t,x) be the unique mild solution to (CP^^).

Let T(t) be an operator on D(A) suchthat T(t)x = u(t,x). Then {T(t)\t > 0}

has the semigroup property.

Proof. It is obvious that T(t)x = x and T(t + s)x = T(t)T(s)x for t, s>0

and x G D(A). We show that u(t,x): [0,oo) x D(A) —<■ D(A) is continuous.

Assume that (tn ,xn) —* (t ,x) G [0,oo)xD(A) and (tn ,xn) —* (t,x) as n -* oo .

Choose a sequence {x'n} c D(A) which converges to x . Then by (1),

\\u(tn,xn)-u(t,x)\\

< \\»(t„,xn) - u(tn,x'n)\\ + \\u(tn,x'n) - u(tn,x'm)\\

+ ll"(*„ >x'm) - u(t,x'm)\\ + \\u(t,x'm) - u(t,x)\\

< \\u(tn,xn) - u(tn,x'n)\\ + \\u(tn,x'n) - u(tn,x'j\\

+ \Ax'j\tn-t\ + \\u(t,x'm)-u(t,x)\\.
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By (9), for any e > 0 there exists a positive integer N = N(e) such that

\\u(tn,xn)-u(tn,x'n)\\ <e/3,

\\u(t„>x'n)-u(tn,x'j\\ <e/3,

\\u(t,x'm)-u(t,x)\\ <e/3

for n , m > N. Thus

ll"('„,*„) - u(t,x)\\ < e/3 + e/3 + \Ax'j\tn -t\ + e/3

= e + \Ax'm\\tn-t\.

Hence

I™ \\u(tn,x )-u(t,x)\\ <e.
«—>oo "       "

Remark. Let X be a real Banach space. In the case A is a continuous mapping

from a subset of [a,b) x X (a < b < oo) into X, Iwamiya has given a

result which guarantees existence and uniqueness of solutions under a weaker

condition than (ii) in § 1 (see [3] in detail) for the nonautonomous differential

equation in X
J (d/dt)u(t) = A(t,u(t)),

(CP\x,z)\
{ u(t) = z,

giving (x,z) in [a,b)xX.
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