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Abstract. By estimating dimensions of representation varieties, we show that

certain finitely presented algebras are infinite dimensional.

The object of this note is to use a tiny sliver of the geometry of representations

of a finitely generated algebra to prove the following

Theorem. Let A be an augmented algebra (over afield k) with augmentation

ideal srf , given by the finite presentation

A = (xl, ■ ■ ■ ,xm ; w\, ■ ■ ■ , w9n)       (w¡ e srf , q > 2).

If
n <(m - \)q

then A is infinite dimensional.

Our theorem should be viewed in the light of the following theorem of

J. Levitzki [3]: if every element of the augmentation ideal of a finitely gen-

erated augmented algebra A is nilpotent of bounded degree, then A is finite

dimensional. It also can be viewed as a counterpart to a similar theorem about

finitely presented groups that we proved a couple of years ago [1].

Before we embark on the proof of the theorem we observe first that we lose

nothing if we assume that k is algebraically closed. The basic idea is to make

use of the parametrisation of the set X(A, q) of all the equivalence classes of

semisimple representations of A in M(q ,k), the k -algebra of all qxq matri-

ces over k, given by Procesi [4]. We recall the details of this parametrisation

in a form suitable for the purposes we have in mind. To this end, suppose that

7 is the free associative zc-algebra on xx, ... ,xm, and that U = M(q, zc)m .

We associate to each representation p of 7 the point

u = (p(xx), ... ,p(xm))e U.
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Each element w = w(xx, ... ,xm) e F defines q polynomial functions fw

(i = 0, • • • , q - 1 ) on U, as follows:

fl,(u) = me coefficient of the degree i term of the characteristic poly-

nomial of p(w), where p is the representation of F in M(q,k) corre-

sponding to u.

Then it turns out that the zc-subalgebra B of 7 generated by these polynomial

functions /' , where w ranges over 7 and i = 0, ... , q — 1, is a finitely

generated subalgebra of the A;-algebra P of all polynomial functions on U.

Notice that P is the k-algebra of polynomials in mq variables. Now let

X(F, q) be the affine algebraic set corresponding to this algebra B and let p

be the canonical map from U into X(F ,q). Then Procesi [4] proves that the

following hold:

(1) p is onto X(F,q);

(2) if 5 is the subset of U consisting of semi-simple representations of

7 , then p maps S onto X(F, q) ;

(3) if p e S is irreducible, then p~](p(p)) is the set of all representations

of 7 in M(m, q) equivalent to p.

It follows, in particular, that if p is an irreducible representation of 7, then

p (p) is of dimension q - 1 . Now X(F, 2) is an affine variety, i.e. it is

irreducible. So it follows (see e.g. Humphreys [2, page 30]) that

dim(.Y(7 , q)) > dim(R(F , q)) - dim(p-l(p))

2 2 2
= mq  - (q  - 1) = (m - l)q +1.

Now if M is a matrix of degree q over k , then Mq — 0 if and only if its

characteristic polynomial is tq . This means that the coefficients of all of the

powers of t except for f in the characteristic polynomial of M are zero. We

need to apply this remark to the defining relations of A. Observe then that

p(wq.) = 0 for every representation p of A in M(q,k) if and only if the

functions f'wJ = 0, for i = 0, ■ ■ ■ ,q - I. The existence of at least one such

representation is guaranteed by the hypothesis since A is an augmented algebra.

Consider then these functions fwJ = g'¡  (i = 0, • ■ • ,q-l ,j = 1, • • • , zz). Every

such function g'. lies in the algebra B. Consequently they can be viewed as

polynomial functions on X(F ,q) with values in k . Let h'¡=pof'. Consider

This is therefore an affine algebraic set, since the /z' are polynomial functions.

And

p{V) = C\{g)r\0)
J,i



FINITELY PRESENTED ALGEBRAS 635

is therefore also an affine algebraic set in X(F, d) whose dimension is then

bounded as follows:

2
dimp(V) > (m- l)q  + I - nq.

Now every point in p(V) corresponds to an equivalence class of semi-simple

representations of 7 such that for each representation p e V the character-

istic polynomial of every p(w.) is tq. So by the remark above, p factors

through A, yielding a semi-simple representation of A . This means that p(V)

parametrises a set of inequivalent semi-simple representations of A . Since a

finite dimensional algebra has only finitely many inequivalent representations

overall, if dimp(V) > 0 then A is infinite dimensional. This is precisely what

the inequality given in the theorem ensures.
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