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A GENERALIZATION OF BRONDSTED'S RESULTS

AND ITS APPLICATIONS

NORIKO MIZOGUCHI

(Communicated by Palle E. T. Jorgensen)

Abstract. We generalize Brondsted's results in [2] and [3] in order to obtain

uniform space versions of Caristi's fixed point theorem, Ekeland's variational

principle and the drop theorem. Moreover, it is applied to weak convergence

of random iterations.

1. Introduction

Ekeland [10] proved a useful theorem on complete metric spaces called the

variational principle which has many applications in nonlinear analysis. Also,

a fixed point theorem of different type from the previous ones was given on

complete metric spaces by Caristi [7] and later seen to be equivalent to Eke-

land's variational principle. In [2] and [3], Brandsted obtained generalizations

of these two theorems by introducing an ordering. Further, Penot [11] showed

the equivalence of Ekeland's variational principle and a geometrical result on

Banach spaces known as the drop theorem due to Danes (see [8] and [9]).

On the other hand, Amemiya and Ando [ 1 ] proved weak convergence of ran-

dom iterations drawn from metric projections onto linear subspaces C0,CX,

■ ■ ■ ,CN in Hubert space. Similar results were obtained by Browder and

Petryshin [4] and Brück and Reich [6] on the assumption of recurrence, selec-

tion or periodicity. More generally, Brück [5] considered under what conditions

such an iteration converges when C0,CX, ■ ■ ■ ,CN are closed convex subsets of

77.

In this paper, Brondsted's results are generalized at first. Using it, we obtain

extensions of Caristi's fixed point theorem and Ekeland's variational principle

to uniform spaces, and of the drop theorem to locally convex spaces. As another

application, we consider weak convergence of random iterations.
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2.  A GENERALIZATION OF BrONDSTED'S RESULTS

Let < be an order relation on a topological space X. For x G X we denote

by S(x) the set of points y G X such that x < y. It is said that a totally

ordered subset XQ of X converges to some x G X provided the net {xa}a€¡

converges to x G X when the points of XQ are indexed by the elements of a

totally ordered set (7, <) so that for a,ß G 7 , xq < x „ if and only if a < ß .

Lemma. Let X be a complete uniform space with a family {dx}XeA of pseudo-

metrics inducing the topology of X, < be an ordering on X and {ff)x€A be a

family of real-valued functions on X satisfying

(i) fx is nonincreasing and bounded below for each k G A ;

(ii) For each A G A and any e > 0, there exists Sx > 0 such

that x < y and fx(x) - fx(y) < öx imply dx(x,y) < e.

Then an arbitrary totally ordered subset of X converges to some point in X.

Furthermore, if the following condition

(iii) S(x) is a closed subset of X for each x G X,

holds, then the limit point of each maximal totally

ordered subset of X is a maximal element in X.

Proof. Let {xa}a€l be a totally ordered subset of X indexed by the previous

method. Fix an arbitrary k G A. Since fx is nonincreasing and bounded below,

the net {fi(xa)}aeI converges in R and hence, given e > 0 and a corresponding

o~x > 0 as in (ii), there is a(X) G 7 satisfying

0 < fx(xß) - fx(xy) <SX       fory>ß> a(X).

Then we have dx(x„,x ) < e for y > ß > a(k) from (ii). This implies that

{xa}Q€/ is a Cauchy net and therefore convergent in X by the completeness of

X. Now suppose {xa}a€I is a maximal totally ordered subset of X. Under the

hypothesis (iii), the limit point z of {xa}a€l belongs to the closed set 5'(xQ),

that is, xa < z for each a G 7. The maximality of z follows from that of XQ .

Note that there always exists a maximal totally ordered subset of X by Zorn's

Lemma. This result is a slight generalization of those of Brandsted in [2] and

[3] but much more convenient and natural than his. For example, our lemma is

applicable to a fixed point theorem for a contraction mapping T: X —> X, i.e.

dx(Tx, Ty) < kxdx(x,y) for all x,y e X and A G A, where kx is a constant

dependent on X with 0 < kx < 1 . However, it is not clear how one would

deduce such a fixed point theorem from Brandsted's results.

3. Extensions of results of Caristi, Ekeland and DaneS

We state extended versions of Caristi's fixed point theorem ([7]), Ekeland's

variational principle ([10]) and the drop theorem ([8]) in uniform or locally

convex spaces.
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Theorem 1 (extended Caristi's fixed point theorem). Let X be a complete uni-

form space with a family {dx}XeA of pseudometrics inducing the topology of X,

f: X —> R u {+00} be a lower semicontinuous, bounded below and proper (i.e.

not identically +00) function and {vx}X€A be a family of positive numbers. If

7": X —► 2    has the property that, for any À G A,

vxdx(x,y) + f(y) < f(x)      for each x G X and y G Tx,

then there exists z G X with Tz = {z}.

Theorem 2 (extended Ekeland's variational principle). Let X, {dx}XeA,f and

{vx}X€A be as in Theorem 1. Then for any x0 G X, there exists z G X such

that

(i) for each x G X with x ^ z, there is A G A satisfying

f(z)<f(x) + uxdx(z,x);

(ii) for any p G A,

f(z)<f(x0)-updp(z,x0).

Let E be a vector space and p a seminorm on E.  For x G E and A,

B c E, we define

p(x, A) = inf{p(x - a): a G A}

and

p(A ,B) = inf{p(a - b):ae A,b e B}.

Assuming convexity of A , it follows that p(-, A): E —* R is a convex function.

For a convex subset B of E and x £ B, we denote by D(x ,B) the convex

hull of ßu {x} and call it the drop associated with x and B. Note that if B

is a bounded, closed and convex subset of a topological vector space, so is the

drop D(x, B) for each x ^ B.

Theorem 3 (extended drop theorem). Let E be a locally convex topological

vector space whose topology is generated by a family {p¿}¿€A of seminorms on

E. If A is a complete subset of E and B is a closed, convex and bounded

subset of E with px(A,B) > 0 for any A G A, then, for each x0 G A, there

exists z G A n T>(x0, B) such that A n T>(z, 77) = {z}.

We deduce Theorem 1 from the Lemma and then prove the other theorems

by showing that they are equivalent to Theorem 1.

Proof of Theorem 1. Fix x G X with f(x) < +00. Putting X' = {y e X:

f(y) < f(x)}, X' is complete by the lower semicontinuity of /. Define an

ordering on X' by u < v if and only if

uxdx(u,v) < f(u) - f(v)       for all A G A.

Applying the Lemma to (X1, <) and fx = f/ux , we obtain a maximal element

z in X. This point z is the desired one.
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Proof of "Theorem 1 -» Theorem 3". Given x0 G E, we put X = D(x0 ,B)(lA.

From the hypothesis, for each A we have ôx = px(A,B) > 0 and there exists

Mx > 0 with p/x -y) < Mx for all x G X and y G ß. Define T: X -> 2*

and a lower semicontinuous function /:I->R by

Tx = T>(x, 77) n ^

and
px(x,B)

f(x) = sup ̂ ——
A£A        MA

for all x G X, respectively. Then it is seen that for all A G A, x e X and

y G Tx,

M2
Px(y-x)<^{f(x)-f(y)}.

Indeed, let A G A and x G X. For each y e Tx, take z G B and / G [0,1]

with y = (1 - t)x + tz . By the convexity of B ,px(- ,B) is a convex real-valued

function on X . It follows that

/^(y,77) < ( 1 - t)px(x,B) + tpx(z,77)

= (l-t)px(x,B).

Thus we have

/(y) = sup^_^ _/)supiLL_J_    =(!_,)/(*),

that is,

/GA        ^ A€A        A^

,.s=0>WO2<£{/w,/ü,)}.
/(x) dA

Since y - x = t(z - x),

M,2
^(y - x) = ^(z - x) < iA^ < '-^{f(x) - f(y)}.

By Theorem 1 we obtain z €. X satisfying Tz = {z} , i.e.

z&D(x0,B)nA   and   D(z,B) nA = {z} .

Proof of" Theorem 3 —> Theorem 2". Fix xQe. X. We may assume f(x0) < +oo

without any loss of generality. We may also suppose that each d} is bounded

on X by replacing dk with d'x if necessary, where

St       ^        ■    i/(*o)-inf/(*) + !    .,       ,\     -
¿7,(x,y) = min j-*¡-,dx(x,y)\    forx,yGX.

In fact, it is clear from the definition of d'x that if the conclusion (i) in Theorem

2 holds for d\, then it holds for dx. Suppose that the conclusion (ii) in Theorem

2 holds for d' , i.e.

f(xQ)-f(z) >upd'M(x0,z).
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Since

f(z) > inff(X) > inff(X) - 1,

we have
/(xQ) - f(z) ^ f(x0) - inff(X) + 1

It follows that

<(w)</w~iIf/w+'

and hence d' (x0, z) = d (x0, z). Therefore we obtain

f(x0)-f(z) >ußdß(xQ,z).

Let F be the Banach space of all bounded functions on X with supremum

norm || • || and Y = ELsa^'H ' IL) > wnere ^ = ^ and || • ||A = || • II f°r a'l
A G A. Putting, for any x e X and A G A,

ö^WOO = dx(x,y)       for all y G X,

we have dx(k) G (T7, ||-||) and dx(x,y) = \\dx(X)-d (l)\\. Thus we can identify

x G X with (xx)X€A G Y, where xA = dx(X). Let is = Y x R and t be the

topology on E induced by the family {px}X€A of seminorms on E defined,

for each A G A, by

px(x,t) = max{\\xx\\,\t\}

for all (x,t) = ((xx)XeA,t) G E. Set g - -f, m — sup{g(x):x G X} and

A = {(x, t) e XxR: t < g(x)} . Then A is complete with respect to t from the

completeness of X and the upper semicontinuity of g. We may assume that

x0 = 0 and f(x0) = g(x0) = 0 by replacing / with the function h defined by

h(x) = f(x0 + x) - f(x0)       for each x G X - x0.

Fix r G R with r > m and, for this r, let

B = {(x,r)G E: \\xx\\ < — for all A G A}

and K - R+B. It follows that B is a closed, convex and bounded subset of

E and px(B,A) > r — m > 0 for each A G A. Theorem 3 assures us of the

existence of (z,s) G A n T>((0,0),77) satisfying ^ nD((z,s),B) = {(z,s)}.

Now, it is easily seen that

K = {{y,t)eE:t> ux\\yx\\ for all A G A}.

From (z,s)eD((0,0),B)nA cKnA, we have

g(z) > ^ll^ll = v\dx(z,x0)       for each A G A.

Suppose (x ,t) G (z,s)+7C, x G X, x ^ z and t < m; then ¿-s > ^Hx^-z^H

for all A G A and hence t - s > 0. From (x - z, t - s) = <3>(u;, r - 5), where

q = (t - s)/(r - s) and u; = (x - z)/q, we get

(w , r - s) — -(x - z ,t - s) G K .
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Note that 0 < q < 1 since 0<t-s<m-s<r-s. Since K is a convex

cone, we have

(z + w ,r) = (z,s) + (w ,r-s) e K,

so

(z + w,r)eK<l(Yx{r}) = B.

By the convexity of D((z, s), B), we have

(x, t) = ( 1 - 0)(z, j) + ? (z + w , r) G T>((z ,s),B).

This implies  (x, /)   ^   ^4 .   Thus for any  x e X  with  x ^ z, we obtain

(x,g(x)) <£ (z,s) + K, i.e.

f(z) < f(x) + uxdx(x, z)       for all A G A.

This completes the proof.

This proof is a modification (to accommodate a family of pseudometrics

rather than a metric) of Penot's proof in [11] that the drop theorem implies

Ekeland's variational principle.

It is immediate that Theorem 2 implies Theorem 1. These proofs also show

the equivalences among Theorems 1, 2 and 3.

4. Convergence of random iteration

We give another application of the lemma. Let C be a closed convex subset

of a Hubert space 77. A mapping T:C —> C with a nonempty fixed-point set

F(T) is said to be quasi-nonexpansive provided \\Tx - f\\ < \\x - f\\ for all

x G C and / G F(T). Note that F(T) is a closed convex subset of 77. In

fact, let fx, f2 G F(T), 0 < t < 1 and f=tfx + ( 1 - t)f2. Then we have

ii/,-m=11/1-/211-11/2-/11
< 11/, -/2II- II/2 -7711

< 11/, - 7711
<ll/,-/ll

and hence

ll/,-/ll = ll/,-77||.
Similarly we obtain

11/2-/11 = 11/2-7-/11.
These two equalities imply that Tf = f. Suppose that {Ta}aeI is a family

of quasi-nonexpansive mappings of C into itself with a nonempty common

fixed-point set F . A random iteration drawn from {Tq}q€/ means a sequence

{xn} such that

x0 = x G C   and   xn = Tr(n)xn_x       for n > 1, where r:N —» 7.

We call x G T a directional interior point of F for y G 77 with ||y|| = 1 if

there exists <5  > 0 satisfying x ± r^y G T7. When the set F has a directional
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interior point f for each y g 77 with ||y|| = 1, with corresponding ô > 0,

an ordering ^ on C is introduced for u, v G C by u < v if and only if

2Sy\(u - v ,y)\ < \\u - fy\\2 - \\v - fy\\2

for all y G 77 with ||y|| = 1. We use the lemma to establish the following in

this situation.

Theorem 4. Let C be a closed convex subset of a Hubert space 77 and {Ta}a€I

be a family of quasi-nonexpansive mappings of C into itself. If the common

fixed-point set F of {Ta}a€¡ has a directional interior point f for each y&H

with \\y\\ = 1, then for each x G C, a random iteration {xn} drawn from

{Ta}a€l weakly converges to some z G C. Further, if the orbit {xn} is a

maximal totally ordered subset of C with respect to the ordering < defined

above, then the limit point z belongs to F.

Proof. From the quasi-nonexpansiveness of Ta , it follows that

||rx-(/y±^y)||<||x-(/y±^y)||.

By a simple calculation, we have

2S\(x-Tx,y)\ <||*-/J|2-||rx-/l|2

for each y £ H with ||y|| = 1, which means x < Tqx. Since the function

x —* \\x - f || is weakly lower semicontinuous, it is sufficient to apply the

lemma to the totally ordered set {xn} .

Remark. Let C, {T } _, and F be as stated above. If the interior of F is

nonempty, there exist / G F and a > 0 such that

2S\\x-Tx\\< ||x-/||2-||7x-/||2       for all x g C.

Then defining an ordering < for u, v G C by u < v if and only if

2«5||W-t,||<||M-/||2-||î;-/||2,

we have a result for strong convergence of random iterations similar to Theorem

4.
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