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A CHARACTERIZATION OF THE MACKEY TOPOLOGY x(L°°, L1)
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(Communicated by John B. Conway)

Abstract. We give a description of the Mackey topology t(L°°, L1 ) for finite

measures in terms of a family of norms defined by certain Young functions.

As an application we obtain various topological characterizations of sequential

convergence in t(L°°,L') . Moreover, we obtain a criterion for relative weak

compactness in L1 in terms of the integral functional defined by some Young

function.

1. Introduction

J. B. Cooper [3, Chapter III] has characterized the Mackey topology t(L°° ,

L ) on L°°-space associated with a positive Radon measure on a locally com-

pact space, in terms of the notion of mixed topologies. K. D. Stroyan [10]

has characterized t(L0C,L ) for finite measures in terms of an infinitesimal

relation on the nonstandard extension *L°° . In [9] we examined the topology

-r(L°° ,L ) from the viewpoint of the theory of locally solid Riesz spaces (see

[I])-
Let (Q,X,//) be a rj-finite measure space, and let L denote the set of

equivalence classes of all real-valued /¿-measurable functions defined and finite

a.e. on Q. Then L is a super Dedekind complete Riesz space under the

ordering x < y whenever x(t) <y(t) a.e. on Í2. The Riesz F-norm

IWIo= [ \x(t)\(l + \x(t)\)~lf(t)dß      forxeL0
7n

where a function f.D. —► (0,oo) is //-measurable with /n/(í)í//í = 1, de-

termines a Lebesgue topology ¿9^ (see [5, Chapter I, §6], [1, Theorem 24.7]).

This topology generates convergence in measure on every measurable set of

finite measure. Let L°° denote the set of all x e L such that IMI^ =

ess supíeí2 \x(t)\ < oo and let ^ denote the topology of the 5-norm || H^ .

Received by the editors June 17, 1988. The results of this paper were presented on August 31,

1989 at the 2nd International Conference on Function Spaces, A. Mickiewicz University, Poznan

(Poland).

1980 Mathematics Subject Classification (1985 Revision). Primary 46E30.

Key words and phrases. Mackey topology t(L°°,L') , Orlicz spaces, mixed topologies, locally

solid Riesz spaces.

© 1990 American Mathematical Society

0002-9939/90 $1.00+ $.25 per page

683



684 MARIAN NOWAK

The absolute weak topology \a\(L°° ,Ll) is a locally convex-solid topology on

L°° defined by the family of Riesz seminorms [p : y e L ] where

Py(x) = j \x(t)y(t)\dß       for , ,00x e L

1.
It is known that |<j|(L ,7, ) is a Lebesgue topology (see [1, Theorem 6.6 and

Theorem 9.1]).

In [9] we showed that t(L°° , L1) is the finest Hausdorff Lebesgue topology

on L°° , and that it coincides with the mixed topology Yl-^o,^¡Loo] ■ For

terminology concerning mixed topologies we refer to [11]. Note that in view

of the Amemiya theorem [1, Theorem 12.9] ¿^ and |tj|(L°°,L ) induce the

same topology on | H^-bounded subsets of L°°, and therefore, the mixed

topologies y^lo^uoo] and -¡/[fT^ ,\<t\(L°° ,L )] coincide (see [11, Theorem

2.2.2]). Moreover, if the measure p. is finite then, by the same argument,

y[-^o'^oiz.°°] coincides also with the mixed topology yí^^^n™]^ < P <

00), where fT denotes the || || -norm topology on Ü .

By a Young function we mean a function (p : [0,00) —► [0,00] which is con-

vex, left continuous, continuous at zero with <p(Q) = 0, not identically equal

to zero. We denote by V the Orlicz space associated with a Young function

(p (see [6, 7] for more details). Note that this includes V being equal to L°°

and L . Let || • || and || • || denote the Luxemburg 5-norm and the Orlicz

77-norm defined on L9 by (see [6, 7]):

\\x\\9 = ini\k>Q: j 9{\x{t)\ß)dp<\}

IklC = SUP {IX *WyW dn\:yeL'', ||y ||r < 1}

where <p* denotes the function complementary to q> in the sense of Young,

i.e. <p*(v) = sup{uv - <p(u): u > 0} for v > 0. We shall use the following

inequalities (see [6, p. 80; 7, p. 48])

(+) \\x\\ip<\\x\\l<2\\x\\v>       forxeL*.

For r > 0 we will write B (r) = {x e V : \\x\\   < r).

A Young function tp is called an TV-function if it takes only finite values,

vanishes only at zero and (p(u)/u —► 0 as u —> 0, <p(u)/u -+00 as u —► 00 (see

[6, p. 9]).
The following lemma will be needed.

Lemma 1.1. Let <p be an N-function. Then there exists an N-function y/ sat-

isfying the A2-condition (i.e. \imsupu_^oo(<j/(2u)/i¡/(u)) < 00) and such that

i//(u) < <p(u) for u>0.

Proof. In view of [6, p. 6] tp(u) - /0" p(t) dt for u > 0, where the function p(t)

is right continuous for / > 0, nondecreasing and such that p(0) = 0, p(t) > 0
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for t > 0 and p(t) —> oo as ? —» oo. Let us put

( p(t) if 0<t<\,

q[t) ~ \ min(2kp(2n-k-{): k = 0,1, ... , n - 1) if 2""1 < t < 2n ,

and define

y/(u) = /   q(t)dt       for w> 0.

It is seen that y/ is an ^-function, and that q(t) - min(2<?(2"~ ), p(2"~ ))

for t G [2"~ ,2"), n = 2,3, ... . Thus y/(u) < <p(u) for w > 0. We shall

show that y/ satisfies the A2-condition. Indeed, let / > 1 . Choose a natural

number n such that t e [2"~ ,2"). Then we have

g(2Q=   g(2B)    <2g(2"-') =

9(0       0(2"-') -  (7(2"-')

Hence for « > 2 we get

y/(2u) < 2uq(2u) < 4uq(u) < Suq(u/2) - \6(u/2)q(u/2) < I6y/(u),

and this means that y/ satisfies the A2-condition.

We denote by Xe ^ne characteristic function of the subset E of Í2.

Henceforth we will assume that the measure p is finite.

2.   A CHARACTERIZATION OF THE MACKEY TOPOLOGY   t(L°°,L')

FOR FINITE MEASURES

We start by giving a characterization of absolutely continuous seminorms

on L°° . Note that the Riesz seminorm p on L°° is absolutely continuous iff

P(Xe) ~* 0 as p(E) —► 0. It is known that p is absolutely continuous iff it is

order continuous (i.e. p(xn) —► 0 if xn [ 0 holds in L°°) (see [8, Theorem

2.1]).

We will write

5oo = {x€L°°:||x||oo<l}       and       Bp = {x e L°°: p(x) < 1}.

Proposition 2.1. For a Riesz seminorm p on L°° the following statements are

equivalent:

(i) p is absolutely continuous.

(ii) There exists an N-function y> such that p(x) < \\x\\   for x e L°° .

Proof, (i) => (ii) For y e L1 let us put f(z) = Jnz(t)y(t)dp for z e L°° .

Denoting by (L°°,p)* the topological dual of (L°°,p) we have (L°°,p)* c

{fv : y e L } , because p is order continuous on L°° and L is the Köthe dual

of L°° . Using the Hahn-Banach theorem for the seminormed space (L°° , p),

for x e L°° we get

p(x) = sup{|/ (jf)| : / e (L°° , p)*, \\fy\\p < 1}
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where §fy\\p = sup{\fy(z)\: z G Bp} . Therefore, writing

Y = {y e V : \fy(z)\ <1 for zeBp}

we get

(1) p(x) = sup
y€Y

f x(t)y(t)dp
Jn

There exists a number c > 0 such that p(z) < cll^H^ for z G L°°  (see [1,

Theorem 16.7]). Applying (+), for y G L1  we get

I \y(t)\ dp < sup i y z(i)y(0 ̂  : z £ 5oo }

{II< csup <   / z(t)y(t)dp : zeB
}

Hence

(2) sup
y€Y Jn

f \y(t)\dp<
Jn

c.

For a measurable subset E of fi, by (1), we have />(X£) = suPy6y ¡e \y^)\ dp ■

Therefore, there exists a sequence of positive numbers (Xn ) such that Xn \ 0

and

(3) sup
yeY Je

j\y(t)\ dp<2
-2«-l

if ME) < I .

■3-1, ,-1
Choose a natural number «0 suchthat 2   °<A,2    c    (/¿(Í2))      and set

q(s) =
XlfTt2~n'~ïs   if   0<5<2c/l71,

,«-«0-l
if   2cX     < s < 2cX   , , « = 1,2,

Define

</(«)= /   q(s)ds       foru>0.
Jo

n-n0 -1        ,-1
Then yi is an TV-function and y/(2u) < 2     °u for u G [cAn   ,cAn+1), « =

1,2,.... For >> G 7-   let us write

£0(v) = {ieQ:b(0l<cA71},

£ (v) = {? g £2: er1 < \y(t)\ < cX^}, n = 1,2, ... .

Then by (2), for y  g   F  we have  p(En(y))cX~l   <  fn\y(t)\dp  <  c, so

p(En(y)) < Xn . Therefore, according to (3), for y e Y we get

f yy(2\y(t)\)dp = /      ̂ (2|y(0|)dp + ¿ /"      ̂ (2|y(0|)^
•>" J£0(y) ^f«»W

OO ç.

<¥(2cX-x)p(Çi) + Y,2n~no        \y(t)\dp<2~\

„=1        '«.ÔO
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Thus \\y\\w < 2  ' if y g Y, and by (1) and (+), for x G L°° we get

/?(x) = sup  / x(t)y(t) dp
y€Y\Jn

< sup (\ j x(t)y(t)dp :yeL\ \\y\\v<2 '    < |Wlr

Thus, to finish the proof it suffices to put tp = y/*.

(ii) =J> (i)  It suffices to show that for an TV-function tp the norm  || • ||

is absolutely continuous on L°° .   Indeed, for a measurable subset E of Í2

we have ||*£||^ = \/(p-\p(E)yx)  (see [6, p.  79]), and thus \\xE\\9 - 0 as

p(E)^0.
Thus the proof is finished.

Remark. The above result is motivated by Andô's paper [2] where a description

of absolutely continuous seminorms on Orlicz spaces L9 defined by some finite-

valued Young function is given.

We are now ready to state our main result.

Theorem 2.2. Let O^  be the collection of all TV -functions.   Then the Mackey

rrs)Yts>Yf\ts>rt   ni)   r/i/9   //ïimïM)    Jll   .  Mtopology t(L°° , L ) is generated by the family {\\ ■ || , LOO : y> G O^} .

Proof. We know that x(L°° , L1) is the finest Hausdorff Lebesgue topology on

L°° . Denote by zt the topology on L°° generated by the family {||-|Ll°°: <p G

Q>N}. According to Proposition 2.1, for each tp G <Í>N the norm || • || is

absolutely continuous on L°°, so r, is a Lebesgue topology, and therefore,

rt c t(L°° ,L ). Since t(L°° ,L ) is a locally convex-solid topology, there

exists a family {/>a} of Riesz seminorms on L°° that generates t(L°° ,L ).

Each pa is absolutely continuous, and according to Proposition 2 we obtain

T(L°°X)ClTt.

The next theorem characterizes sequential convergence in (L°° , z(L°° , L )).

Theorem 2.3. For a sequence (xn) in L°° the following statements are equiva-

lent:

(i)   xn^0for T(L°°,L').

(ii)   \\xn\\   —► 0 for each N-function <p .

(iÜ)    \\Xn lío "* °  atld SUP« K Hex, < °° ■

(iv)   fa WMOI ¿A* -» 0 /or every y G L1 .
(v)   ||xj|   —» 0 for some I <p <oc and supn [JJC^U^ < oo.

Proof,   (i) <*■ (ii) It follows from Theorem 2.2.

(i) o (iii) See [9, Theorem 1].

(i) o (iv) See [9, Theorem 9].

(iii) o (v) In view of [1, Theorem 12.9] ff coincides with ^ on || • Un-

bounded sets in L°° .
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3. Weak compactness in L1

In this section we use Theorem 1.2 to obtain some interesting criterion for

relative weak compactness in L . This criterion is analogous to the Andô's

criterion for relative o(L9 ,L9 )-compactness in Orlicz spaces L9 associated

with finite-valued Young functions <p such that (p(u)/u —► oo as u —> oo (see

[3, Theorem 2]).

Theorem 3.1. For a subset A of L   the following statements are equivalent:

(i)   A is relatively compact for the weak topology a(L ,L°°).

(ii)  There exists an N-function (p such that

\x(t)\)dp < oo.sup /  f(
x€A Jn

Proof, (i) => (ii) Since t(L°° , L ) is the topology of uniform convergence on

the weakly compact subsets of L , in view of Theorem 2.2 there exist an TV-

function y/ and a number r > 0 suchthat B (r)r¡L°° c A  , where A   denotes

the polar of A with respect to the dual pair (L°° ,L). Hence

= \xeLl:    f x(t)y(t)dœ <r~l       for y e Bw (1) nL°) .
I 7iJ ¥ )

According to the argument from [6, pp. 86-87] we have the following represen-

tation of the Orlicz ß-norm ||.|| on V :\x^.=sup{\¡Clx(t)y(t)dp\:y€.

Bv(\) n L°°}. Therefore, supv€4 tl*îlr < '"' , because \\x\\v. < ||jc||J. for all

x G Lv . In view of Lemma 1.1 there exists an TV-function <p satisfying the

A2-condition and such that <p(u) < y/*(u) for u > 0. Thus supxe^ ||x|| < r~

and hence [6, p. 77] supv€4 Jn<p(\x(t)\)dp < oo.

(ii) => (i) Applying the Holder inequality [6, Theorem 9.3], for a measurable

subset E of Q we have

sup /  \x(t)xE(t)\ dp < \\XEÙ suP ll-^l
.v€/l Jn x€A

Since sup^g^ ||x|| < oo and L°° c (L9 )a (= the ideal of elements of abso-

lutely continuous norm in L9 ) we get supv£(f fE \x(t)\dp —* 0 as p(E) -t 0.

It is seen that the set A is ||.||, -bounded. Therefore, according to the Dunford-

Pettis theorem (on relatively weakly compact subsets of L ) (see [4, p. 294])

we obtain that A is relatively compact for a(L ,L°°).
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