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Abstract. The nilpotent group of automorphisms of a bordered Klein surface

X of algebraic genus q > 2 is known to have at most 8(q - 1) elements.

Moreover this bound is attained if and only if q - 1 is a power of 2. In

this paper we prove that if X is nonorientable and q > 3 then the bound in

question can be sharpened to 4q which gives a negative answer to a conjecture

of May [16]. We also solve another problem of May [ 16] finding bounds for the

p-groups of automorphisms of Klein surfaces.

1. Introduction

Let X be a compact Klein surface of algebraic genus q > 2 and let G

be a group of its automorphisms. Then \G\ < 84(q - 1). If a surface X has

nonempty boundary then this bound can be strengthened to 12(q-1 ). Although

it is attained for infinitely many values of q [6, 7, 8, 12, 14, 15, 16, 17, 19],

it was shown recently by May [16] that no nilpotent group of automorphisms

of a bordered Klein surface of algebraic genus q has order 12(q - 1). It was

also shown in [16] that 8(q - 1) is the bound in this case as well as that a

nilpotent group for which it is attained must be a 2-group. Moreover this bound

is attained for every q- 1 being a power of 2. Nevertheless the only one surface

constructed by May is nonorientable (a real projective plane with two holes

having the dihedral group of order 8 as a group of automorphisms).

Having a Klein surface with a nilpotent group of automorphisms of maxi-

mal possible order one can produce an infinite collection of orientable surfaces

having this property, while no general method of producing nonorientable ones

is known. This led May in [16] to ask if the bound 8(q - 1) for the order of a

2-group of automorphisms of a compact nonorientable bordered Klein surface
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of algebraic genus q > 3 can be improved in a former version and conjecture

in the revised one that the answer to this question is "no." We show in this

paper that this conjecture is false proving that a nilpotent group of automor-

phisms of a nonorientable bordered Klein surface of genus q > 3 has at most

4q elements. Moreover we show that this bound is attained for every q being

a power of 2, and dihedral groups turn out to be the corresponding groups of

automorphisms. From our results on presentations of 2-groups it follows also

that a nilpotent group of automorphisms of a nonorientable Riemann surface

of algebraic genus q>2 has at most 8(q-l) elements. Thus the Zomorrodian

result on nilpotent groups of orientation-preserving automorphisms of Riemann

surfaces [22] cannot be generalized to the nonorientable case. This fact is in

marked contrast with the corresponding results for the maximal groups of auto-

morphisms of compact Klein surfaces for which the bounds 84(q- 1 ) (in a case

of surfaces without boundary [20]) and 12(q- 1) (in a case with boundary) are

attained both in orientable and in nonorientable cases.

Finally we solve another problem posed by May in [16] of determining the

best upper bound for the order of a p-group of automorphisms of a Klein

surface of genus q > 2.

2. Preliminaries

We will prove the announced results by means of NEC-groups. An NEC-

group is a discrete subgroup Y of isometries <S of the non-Euclidean plane C+

(including those which reverse orientation-reflections and glide reflections) with

compact quotient space C+/T. Let ©+ denote the subgroup of index 2 in C5

consisting of orientation preserving isometries. An NEC-group T contained in

0+ is called a Fuchsian group, and a proper NEC-group in the other case. In

what follows T+ = rn<25+ is the canonical Fuchsian subgroup of an NEC-group

r.
Macbeath and Wilkie [10, 21] associated to every NEC-group a signature that

has the form

(2.1) (g;±;[mx, ... ,mr],{(nxx, ... ,nXs¡), ... ,(nkx, ... ,nkSj¡)})

and determines the algebraic structure of the group.

The numbers mi are called proper periods, the brackets (n¡x, ... ,n¡s ) the

period cycles and g > 0 is called orbit genus. The group with signature (2.1)

has the presentation with the following generators

(i)x¡,       i=\,...,r,

(ii)ciJ,       i=l,...,k,    j = 0,...,si,

(2.2) (iii) e¡,       i= 1, ... ,k,

(iv) a,, 6,,    i = I, ..., g   (if the sign is +)

aV,        i=l,...,g   (if the sign is-)

subject to the relations

(i)  x^i = 1,       i= 1,... ,r,
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(")  C¡S¡ =e7l(:ioei>       i-l,...,k,

(iü)  c2j_x = c2d = (Cij^Ctjfij = 1,       i = 1,... ,k,   j = 1,... ,s¡,

(iv)   xx...xrex...ekaxbxa~lb~l ...agbga~]b~l = 1 (if the sign is + )
1 7

xx...xrex...ekdx ...dg = 1 (if the sign is - ).

In what follows these generators are said to be the canonical generators of

r. Every NEC-group has a fundamental region associated, whose area depends

only on the group and not on the chosen region. It is given by

r k

(2.3) p(T) = 2n(ag + k - 2 + £(1 - 1/m,) + £(1 - l/ify)/2),
í=i (=i

where a — 1 if the sign is - and a = 2 in the other case.

It is known that a group T with presentation (2.2) can be realized as an

NEC-group with signature (2.1) if and only if the right-hand side of (2.3) is

greater than 0.

If T is a subgroup of finite index in an NEC-group A, then it is an NEC-

group itself and the following Riemann-Hurwitz formula holds

(2.4) [A:Y] = p(Y)/p(A).

An NEC-group with signature

(2.5) (g;± ;[-],{(-) ,,.*.,(-)})

will be called a surface group of genus g with k boundary components ori-

entable or nonorientable accordingly, as the sign is + or - . If k > 0 or the

sign is - then the number q = ag + k - 1 is called the algebraic genus of Y.

It equals the algebraic genus of the corresponding Klein surface X = C+/T.

If k = 0 and the sign is + then the algebraic genus q equals the topological

genus g.

It is known [18] that a compact (bordered) Klein surface of genus q > 2

can be represented as C+/T, where T is a (bordered) surface group of alge-

braic genus q. Moreover given a surface so represented, a finite group G is a

group of its automorphisms if and only if there exists an NEC-group A and

a homomorphism 8 from A onto G having Y as the kernel [11]. Such a

homomorphism is said to be a (bordered or unbordered, orientable or nonori-

entable according as k > 0 or k = 0 and Y has the sign + or - respectively)

surface-kernel homomorphism, a group G so represented a surface-kernel factor

group of A, while A is said to admit G as a surface-kernel factor. In what

follows by a surface (surface group) we will mean unbordered surface (surface

group).

In order to state the facts which will be necessary for our considerations we

need some more notations. Given an NEC-group Y and a subgroup Yx , a

canonical generator of Y is said to be proper (with respect to F[ ) if it does

not belong to Yx . An element of Y expressible as a composition of proper

generators of Y is called a word of Y (with respect to T, ).  Finally a given
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word is orientable if it preserves orientation of C+ and nonorientable in the

other case. With the above notations we have the following results.

Theorem 2.1 [4, 9]. Let Yx be a subgroup of an NEC-group Y of finite index

N. Then

(1) If N is odd then Yx is orientable if and only if Y is.

(2) If N is even then Yx  is nonorientable if and only if a glide reflection of

the canonical generators of Y or a nonorientable word in Y belongs to T, .

Theorem 2.2 [3]. An NEC-group Y admits a bordered surface subgroup as a

normal subgroup of finite index if and only if it has a signature with an empty

period cycle or with a period cycle with two consecutive periods equal to 2.

3.  ON GENERATORS AND RELATIONS OF FINITE NILPOTENT GROUPS

117 7 1 k
Lemma 3.1. Let (x,y,z\x ,y ,z ,(xy) ,(yz) ,(xz) ) be the presentation of

the dihedral group G of order 2k. Then k is even and y = (xz) '  .

Proof. xyx~ = y and zyz~ = y. Thus a subgroup 77 generated by y

has order 2 and is a normal subgroup of G. Thus G = G/H has order

k. On the other hand G is a factor group of the group with presentation

(x ,z\x ,z ,(xz) ). As a result the relation (xz) holds in G, otherwise it

would have the order 2k. Thus (xz) ' belongs to 77, and so y = (xz) '

holds in the former group, as desired.

The importance of the next lemma lies in the fact that it shows that the

approach, suggested in [16, Problem 2, p. 292], for finding nonorientable Klein

surfaces of algebraic genus q > 3 with nilpotent group of automorphisms of

order 8(q- 1) fails.

Lemma 3.2. A finite nilpotent group G of order greater than 8 cannot be gen-

erated by three elements A, B, and C, of orders 2 such that AB and BC

generate the whole group G and AB, BC and AC have orders 2, k and I,

respectively, where k and I are greater than 2.

Proof. Assume, by the way of contradiction, that a group G in question exists.

A finite nilpotent group is the product of its Sylow subgroups and G is generated

by elements of order 2. Thus G is a 2-group, say of order 2 , and k = 2m ,

/ — 2", where m > 2 or n > 2. Changing the role of the generators A and

B, if necessary, we can assume that k < I. Let N = 4. Then it is easy to see

that among 14 groups of order 16 there is no such group. So N > 5 . In all the

cases considered below we will assume that N is minimal.

First assume then that k = / = 4, and let 77 be a normal subgroup of G of

order 2. Let G = G/H. By the minimality of G A, B, C, AB, (BC)2, or

(AC) belong to 77. But then this element would become in G a relation that

collapses it to a group of order < 8 , a contradiction.

Now let k — 4 and / > 8. Consider, as in the first case, a normal subgroup

H of G of order 2 and let G be the quotient.   By the minimality of G at
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least one of A, B, C, AB, or (BC)2 belongs to 77. But if A, C or AB

belonged then it would produce in G a relation collapsing it to a group of order

< 8. If B belonged to 77 then since 77 is normal in G, (BC)2 would be a

relation in the former group. Finally if none of the elements considered before

belonged to 77 then by the minimality of G, (BC)2 would belong to 77. But

then it would collapse G to a dihedral group with the presentation

(A,B, qi2 ,B2 ,C2 , (AB)2 ,m(BC)2 , (AC)S),

where s=\ors = j(A,B, and C are the images of A, B, and C,

respectively, under the canonical projection). By Lemma 3.1 5= (AC)S' , and

so B(AC)S/2 = 1 . Thus B(AC)S/2 belongs to 77. As a result B(AC)s/2 = 1

or B(AC)s/2 = (BC)2. In the first case CB = C(AC)S'2 and so 77C has order

2, a contradiction, while in the second BC = C(CA) ' and thus BC also has

order 2, a contradiction once more.

Finally assume that 8 < k < I. Let as before 77 be a normal subgroup of

G of order 2 and let G be the corresponding quotient. If C belonged to 77

then G would be a group of order < 4. If ^4 were in 77 then since 77 is

a normal subgroup of G, (AC) would be a relation in G. Similarly for B .

If AB belonged to 77 then the quotient would be a cyclic group generated by

7?C—the product of two elements of order 2, a contradiction once more. Now

since k, I > 8 , G would be a group satisfying the hypothesis of the lemma.

This is a contradiction with the minimality of G.

Corollary 3.3. Let G be a nilpotent bordered nonorientable surface-kernel factor

of an NEC-group A with signature (0 ; + ;[-], {(2,2,2, k)}). Then k isa

power of 2 and G is the dihedral group of order 2k .

Proof. Let A and G be groups in question and let 9 be the corresponding

homomorphism. The group G is generated by elements of order 2 and so is a

2-group. Thus k is a power of 2, since otherwise a nontrivial power of c^cA

would be in Ker 9. It is easy to see that A is generated by four elements c0,

cx , c2, and c3 subject to the relations

(c0cx)2 = (cxc2)2 = (c2c3)2 = (c0c3)k = 1 .

First notice that 6(c0) £ 1 and 9(c3) / 1, since otherwise Y would have

nonempty period cycle by [5]. Moreover since Y has a boundary it contains

one of the remaining reflections. Without loss of generality we can assume that

9(cx) = 1 . Then 9(c2) ^ 1, since otherwise Y has nontrivial period cycle by

[5]. As a result

9(c0) = x,       9(cx) = l,       9(c2)=y,       9(c}) = z,

where x, y, and z are elements of order 2 such that yz and xz have orders

2 and k , respectively.

Now we will show that if Y is nonorientable then the subgroup H of G

generated by xz and yz equals the whole group G. First notice that cQ , c2,
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c3 are the only proper generators of A with respect to Y. Thus an element w

is a nonorientable word in Y if and only if it can be presented as a product of

an odd number of these generators. But it is easy to see that such a word can

be written as a product uv , where u is a product of (c0,c3), (c2 ,c3), their

inverses and v is one of the reflections, say c0. Thus 9(cQ) belongs to 77.

But then since 9(c3) = d(c0)9(c0c3) and 9(c2) = 9(c2c3)9(c3), 9(c2) and 9(c3)

also belong to 77. So 77 = G as desired.

Let / be the order of xy. Then by the previous lemma / = 1 or / = 2 . But

in the first case x = y and so xz = yz, a contradiction, while in the second

G is dihedral group of order 2k , as desired.

Corollary 3.4. None of NEC-group A with signature (0 ; + ;[-], {(2, k,l)}) ad-

mits a finite nilpotent group as a nonorientable surface-kernel factor.

Proof. Assume to get a contradiction that G is a nilpotent nonorientable

surface-kernel factor of a group A. Then by a result of Singerman [20] G is

generated by 3 elements A , B, and C of order 2 whose products AB , BC,

and AC have orders 2, k, and /, respectively and in addition AB and BC

generate the whole group G. This is a contradiction of Lemma 3.2.

4. Main results on 2-groups

of automorphisms of compact nonorientable Klein surfaces

Theorem 4.1. Let G be a nilpotent group of automorphisms of a nonorientable

bordered Klein surface of algebraic genus a > 3. Then \G\ < 4q. Moreover this

bound is attained for every q being a power of 2 and the corresponding group of

automorphisms is the dihedral group.

Proof. Let G be a finite nilpotent group of automorphisms of a compact nonori-

entable bordered Klein surface of algebraic genus q > 3 . Then G = A/Y, where

A is a proper NEC-group and T is a nonorientable bordered surface group of

algebraic genus q, i.e. p(Y) — 2n((\ - 1). Let \G\ — N. First we will show that

p(A) >n((N-4)/2N).
Let A have signature (2.1). By Theorem 2.2 k > 0. If k > 2 then p(A) >

2n. If k = 2 and either g > 0 or A has a proper period then p(A) > n,

while in the other case, one of the period cycles is nonempty and then clearly

p(A) > n/2 . Assume thus that k — 1 .

If the period cycle is empty then from Theorem 2.1 it follows that the sign is

- . If g > 2 then p(A) >2n. If g = 1 then r > 0, since otherwise p(A) = 0.

But in this case p(A) > n .

If the period cycle is nonempty then by Theorem 2.2 at least two of its periods

are equal to 2. If g > 1 then p(A) > n/2 .

Thus we can assume that A has a signature (0, + ,[mx , ... ,mr],

{(nx, ... ,ns)}). Notice first that since G is a product of its Sylow subgroups

all ni are powers of 2, otherwise Y would have a nontrivial period [1, 2]. By

Theorem 2.2 s > 2 and if s = 2 then «, = n2 — 2. If in addition r > 2 then
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p(A) > n. Assume then that r = 1. If m = 2 then p(A) — 0. If m = 3 then

Xj = e~ and since G is a direct product of its Sylow subgroups the images of

e and c¡ commute for all /. In particular the relation ec0e~] = c2 in A im-

plies c0 = c2 in the factor group. Now since T is a bordered surface subgroup

of A, a canonical reflection of A belongs to Y. If cQ belongs to Y then c, is

the only orientation reversing proper generator of A and it is easy to see that

it and other proper generators of A cannot produce a nonorientable word. In

fact using the relation xx = e~   in A and the fact that the image of x;. and

cj in G commute one can choose such a word w in the form w = x.c. . But
k

then cx would equal xx   in the quotient, a contradiction since the image of x,

has order 3 while the image cx has order 2. Similarly if cx belongs to Y then

the remaining proper generators of A cannot produce a nonorientable word in

r. If m>4 then p(A)>n/2.

Assume thus that s > 3. If s > 5 then p(A) > n/2. Let 5 = 3. Using

Theorem 2.2 once more we deduce that p(A) < 0 unless r > 0. But then

p(A)>n/2.
So it remains to consider the case s - 4 only. By Theorem 2.2 two con-

secutive periods are equal to 2. If both of the remaining periods are different

to 2 then clearly p(A) > n/2. Thus we can assume that A = (0; + ;[-],

{(2,2,2, k)}). But then by Corollary 3.3 G is the dihedral group of order 2k .

Thus k = N/2 and consequently p(A) - n((N - 4)/2N).

Now by the formula (2.4) N= \G\ =p(Y)/p(A) < 2n(q-l)/n((N-4)/2N) =
(4N/(N - 4))(q - 1). So N < 4q. This completes the first part of the proof.

Now given q > 3 being a power of 2 let A be an NEC-group with signature

(0; + ;[-],{(2,2,2,2q)}) and let G = (x,y|x2,y2, (xy)2q) be the dihedral

group G of order 4q. We define

6(c0) = x,    0(c,) = l,    9(c2) = (xy)\    9(c3) = y,    9(c4) = x,    9(e) = 1.

It is clear that this assignment induces a bordered surface-kernel homomorphism

from A onto G. Moreover w = (c0c3)qc2 is a nonorientable word in Y. Thus

r = Ker 9 is a nonorientable bordered surface group. By (2.4) the algebraic

genus of T is q. Thus X = D/Y is a nonorientable bordered Klein surface

of algebraic genus q admitting the dihedral group of order 4q as a group of

automorphisms.

A nice example of the dihedral group D2 acting on a nonorientable bordered

Klein surface of algebraic genus q can also be found in [13].

Remark. We see that 4q = 8(q - 1) for q = 2 only. Thus our theorem gives a

negative answer to the conjecture of May posed in [16].

Theorem 4.2. Let G be a nilpotent group of automorphisms of a compact nonori-

entable Klein surface without boundary of algebraic genus q > 2.  Then \G\ <

8(q - 1 ). Moreover this bound may be attained only for q - 1 being a power of

2.
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Proof. Let G be a finite group of automorphisms of a compact nonorientable

Klein surface without boundary of algebraic genus q > 2. Then G = A/Y,

where A is an NEC-group with signature (2.1) and T is a nonorientable surface

group with p(Y) = 2n(f\ - 1). We will show that p(A) > n/4.

Similarly as in the previous theorem we argue that this is so unless g = 0,

k = 1 and r < 1, i.e. A has signature

(0; + ;[ro],{'(»,,...,»,)})

or

(0; + ;[-],{(nx,...,ns)}),

where all ni are powers of 2.

Let us consider the first case.

\f s>2, then p(A) > n/2.

If 5 = 2 and nx — n2 = 2, then m > 3, otherwise p(A) = 0, but then

p(A) > n/3. If nx > 4 or n2 > 4 then p(A) > n/4 and the bound is attained

for A = (0; + ;[2],{(2,4)}).

Thus let j = 1 . If n = 2, then A is generated by x, e, cQ, cx subject to

the relations xe = xm = c0 = cx = (c0cx) = 1, ecQe~ = cx . In particular c0

commutes with c, , and generator e is redundant. Since T is a surface group

c0,cx, and x are proper generators of A, and since Y is nonorientable, a

nonorientable word w = w(x ,c0,cx) belongs to Y. Now if w is nonorientable

then c0 and c, appear an odd number of times and using the defining relations

for A one can argue that w is a product of a power of x and one of the

reflections, say w — x c0. But then c0 = x in the quotient G = A/Y.

Moreover c, = x~ cQx = c0 in G. So cQcx = 1 in G, and thus cQcx belongs

to T. On the other hand it has order 2, a contradiction since Y is a surface

group. Therefore we can assume that n > 4. If in addition m = 2 then

p(A) < 0. If m = 3, then since G is the direct product of its Sylow subgroups

the image of x and c- commutes for / = 1,2. So in particular c0 = cx in G,

and so c0cx e Y, a contradiction again. So we can assume that m > 4. But

then p(A) > n/4 and the bound is attained for A = (0 ; + ; [4], {(4)}) only.

Let us consider the other case i.e. A = (0 ; + ;[-], {(«,, ... , ns)}).

If 5 > 5 then p(A) > n/2 .

If 5 < 2 then p(A) < 0.

If s = 3, and nx, n2, n3 > 4 then p(A) > n/4 and the bound is attained

for A = (0; + ;[-],{(4,4,4)}) only, while if one of n¡, say nx = 2 then

the other periods are greater than 2, otherwise p(A) < 0, but this contradicts

Corollary 3.4.

Finally let 5 = 4. Then p(A) > n/4 and the bound is attained for A =

(0; + ;[-],{(2,2,2,4)}) only.

We see from the proof that all groups A for which the bound n/4 is attained

are generated by the elements of orders being powers of 2. Thus since G is

nilpotent it must be a 2-group.
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Remark. The bound 16(q-l) (see [22]) for a nilpotent group of automorphisms

of compact Riemann surface is not attained in the nonorientable case (a group of

automorphisms of nonorientable Klein surface without boundary can be viewed

as a group of orientation-preserving automorphisms of a Riemann surface of

the same algebraic genus). It is worth noting that this is in marked contrast

with the corresponding results for the maximal groups of automorphisms of

compact Klein surfaces for which the bound 84(q - 1) (in case of surfaces

without boundary) and 12(q - 1) (in case with boundary) is attained both in

the orientable and in the nonorientable case.

Example. Let A be an NEC-group with signature (0;+ ;[-], {(2,2,2,4)}) and

let 9: A —► G = (x,y\x ,y ,(xy) ) be a homomorphism defined by

9(c0) = x,    0(c,) = (xy),    9(c2)=y,    9(c3) = xyx,    9(c4) = x.

Then 9 is a nonorientable surface-kernel homomorphism. As a result the di-

hedral group of order 8 acts as a group of automorphisms on a nonorientable

Riemann surface of genus 2 (i.e. the bound in the previous theorem is attained).

Remark. The above example is the only one we know and it would be interesting

to know whether this case is like the nonorientable bordered one in which, as

we showed in Theorem 4.1, the bound 8(q - 1) can be improved for q > 2.

Certainly if the answer to this question turns out to be affirmative another

interesting problem of finding the sharp bound appears.

5.   /7-GROUPS OF AUTOMORPHISMS OF KLEIN SURFACES

Theorem 5.1. Let G be a p-group (p ^ 2) of automorphisms of a nonorientable

bordered Klein surface of algebraic genus q > 2 then \G\ < (p/(p - l))(q - 1) -

Moreover given an integer n > 1 there exists a p-group of order p" that acts as

a group of automorphisms on a compact nonorientable bordered Klein surface of

algebraic genus q = (p - l)pn~l + 1.

Proof. Let G be a group in question. Then G can be represented as a factor

group A/r where A is an NEC-group and T is a nonorientable bordered

surface group with p(Y) = 2n(q - 1). We will show that p(A) > 2n(p - \)/p .

Since r is a bordered surface group, it has a period cycle. Moreover all

period cycles of A are empty, otherwise since G has no elements of order 2

a nonempty period cycle would induce by [ 1 ] such a period in Y. We can as-

sume that A has a proper period, otherwise p(A) would be a multiplicity of

2n . Moreover all periods are powers of p , since in the other case they would

produce proper periods in Y [2]. If g = 0 and k = 1 then the reflection c

corresponding to this period cycle is the unique canonical generator of A re-

versing the orientation of D. Moreover c belongs to Y since Y has boundary.

So by Theorem 2.1(ii) Y would be orientable. Thus either g > 0 or k > 1 .

But then p(A) > 2n(p - \)/p, as desired.
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Now by the Riemann-Hurwitz formula (2.4) we obtain that |G| = p(Y)/

p(A) < 2n(q - \)/2n(p - \)/p — (p/(p - l))(q - 1). This completes the first

part of the proof.

The bound 2n(p-l)/p is attained for a group A with signature (1 ; - ; [p],

{(-)}). Let G be a cyclic group of order p" generated by an element A and let
„n-\

9 be the homomorphism from A onto G defined by 9(x) — A , 9(c) — 1,

9(e) = A, 9(d) = A~iP"~, + l)/2. Then it is clear that 9 is a nonorientable,

bordered, surface-kernel homomorphism. By (2.4) p(Ker 9) = 2n(p - l)p"~ .

As a result G acts as a group of automorphisms on a nonorientable bordered

Klein surface of algebraic genus q = (p - 1 )p"~l + 1 .

Theorem 5.2. Let G be a p-group (p ^ 2) of automorphisms of an orient-

able bordered compact Klein surface of algebraic genus q > 2. Then \G\ <

(pKp - 2))(q - 1). Moreover given a positive integer n there exists a p-group

of order p" that acts as a group of automorphisms on a compact orientable

surface with boundary of algebraic genus q = (p - 2)p"~l + 1.

Proof. Let G be a group in question. Then G can be represented as a factor

A/r where A is an NEC-group and Y is an orientable bordered surface group

with p(A) = 2n(q - 1). Similarly as in the previous theorem we can show that

p(A) > 2n(p - 2)/p .

Now by the Riemann-Hurwitz formula (2,4) we obtain |G| = 27i(q - 1)/

p(A) < 2n(q - \)/2n(p - 2)/p = (p/(p - 2))(q - 1). This completes the first

part of the proof.

This time the bound in question is attained for a group A with signature

(0; + ;[p,p],{(-)}) • From Theorem 2.0.1 in [23] we have that for any integer

n there exists a p-group G of order p" generated by two elements A and B

of order p whose product also has order p. Let 9 be an epimorphism from

A onto G defined by 9(xx) = A, 9(x2) = B, 9(e) = (AB)~l , 9(c) = 1 .

Then it is clear that 9 is a bordered orientable surface-kernel homomorphism.

By the formula (2.4) p(Ker 9) - 2n(p - 2)p"~l and so G acts as a group

of automorphisms on a bordered orientable Klein surface of algebraic genus

q = (p-2)p"-i + 1.
Finally in the same way as before we obtain

Theorem 5.3. A p-group of automorphisms of a nonorientable Klein surface with-

out boundary of algebraic genus q > 2, has at most (p/(p - 2))(q - 1 ) elements.

Moreover given a positive integer n there exists a p-group of order pn acting as

a group of automorphisms on a nonorientable Klein surface without boundary of

algebraic genus q = (p - 2)p"~  + 1.
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