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SEQUENCES IN THE MAXIMAL IDEAL SPACE OF 77°°

SHELDON AXLER AND PAMELA GORKIN

(Communicated by Palle E. T. Jorgensen)

Abstract. This paper studies the behavior of sequences in the maximal ideal

space of the algebra of bounded analytic functions on an arbitrary domain.

The main result states that for any such sequence, either the sequence has an

interpolating subsequence or infinitely many elements of the sequence lie in the

same Gleason part.

Introduction

Fix a positive integer N and fix a nonempty open subset Q. of C . The

Banach algebra of bounded analytic functions on Q is denoted by 77°°(Í2) ; its

maximal ideal space is denoted by M(H°°(Çl)). This paper studies the behavior

of sequences in M(H°°(Q)).

The maximal ideal space M(H°°(Çl)) consists of the multiplicative linear

functionals from 77°°(Q) onto the complex plane C. For <p, t g M(H°°(Çl)),

the pseudohyperbolic distance between <p and t , denoted dn(tp, t) , is defined

by
dQ{tp, r) = sup{|t(/)| : / G 77°°(n), H/ll^ < 1, and <p(f) = 0} ;

here WfW^ is the usual supremum norm defined by

||/||oo = sup{|/(z)|:zGn}.

As is well known, da is a metric on M(H°°(Çl)) with the property that

any two open balls of radius 1 are either equal or disjoint (see, for example,

Sections 1 and 2 of [1]). The open balls of radius 1 are called the Gleason parts

of M(H°°(Çl)). Specifically, if tp G M(H°°(Q)), then the Gleason part of <p ,

denoted G(<p), is defined by

G(<p) = {t G M(H°°(Q.)): dn(<p,T) < 1}.

A sequence (<pn)™=x c M(H°°(Q)) is called an interpolating sequence if for

every bounded sequence of complex numbers (A„)JJ1, , there exists / G 77°°(Q)

such that

<P„(f) = ^n        for every « G Z+;

here Z+ denotes the set of positive integers.
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Although dn is a metric on M(H°°(Q.)), whenever we use topological notions

(closure , limits, etc.) on A7(77°°(£2)), unless explicitly stated otherwise we are

referring to the weak- * topology that M(H°°(Çl)) inherits as a subset of the dual

of 77°°(Í2). With this topology, M(H°°(Çl)) becomes a compact Hausdorff

space. Except in some trivial cases (for example, when H°°(Q) consists of

only the constant functions), the topology on M(H°°(Q.)) is not equal to the

topology induced by the metric dn .

The next section contains the main result of this paper, Theorem 3, which

states that if (<Pn)°^Lx is a sequence in M(H°°(Q)) and tp is a limit point

of this sequence, then either <pn is contained in the Gleason part of <p for

infinitely many n or (<pn)™=l has an interpolating subsequence. As corollaries,

we show (Corollary 9) that if <pn —> <p, then <pn is in the Gleason part of <p

for all but finitely many n and (Corollary 11) that if (<pn)™=x is a sequence in

M(H°°(Ü.)) such that each <p lies in a distinct Gleason part, then (í¡?„)^l, has

an interpolating subsequence. These statements would not be true if sequences

were replaced by nets.

The final section of the paper specializes to the case of the open unit disk D

in the complex plane. Corollary 12 states that the path connected components of

M(H°°(D)) are precisely the Gleason parts. Corollary 13 shows that although

the topology induced by the metric dD is not equal to the usual topology on

M(H°°(D)), the two topologies have the same convergent sequences.

We thank Hans-Martin Lingenberg for calling our attention to reference [2].

Domains in C

To prove our main result (Theorem 3), we will need two lemmas. For our

first lemma, we need to know a bit about the pseudohyperbolic metric on the

open unit disk D .

We can think of D as a subset of M(H°°(D)) by identifying each point of

D with the multiplicative linear functional of point evaluation at that point.

With this identification, an easy computation using the Schwarz Lemma shows

that

dD(w,z) for all w , z G D.
1 - wz

Given wx, w2 , z, ,z2 g D with dD(wx,w2) - dD(zx,z2), the explicit de-

scription of the analytic automorphisms of D (one-to-one analytic maps of

D onto D ) shows that there exists an analytic automorphism b of D such

that b(wx) - z, and b(w2) = z2.

The idea for the statement and proof of the following lemma comes from

[5], Chapter VII, Theorem 2.2.

Lemma 1. Let tp , t g M(77°°(Q)) be such that t <£ G((p). Let e > 0. Then

there exist f,g G 77°°(Q) such that

9(f) = 0,       t(/)=1,

9(g) = l,       r(g) = 0,
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and

\f(z)\ + \g(z)\ <l+e       for every zgQ.

Proof. Let

ô= 1 - 1/Vl +2e

and let / = dD(\ -ô, - 1 + ô). Because da(<p,t) = 1, there exists s G 77°°(Í2)

such that ll^ll^ < 1 and

<p(s) = 0        and        t(s) = t.

Clearly dD(0,t) = dD(l - ô, - 1 + ô), so there is an analytic automorphism b

of D such that

6(0) = 1-a        and        b(t) = -l+ô.

Let
,      b os
h =

l-ô'

Then

UAH«, < vTT2i        and        <p(h) = 1, x(h) = -1,

where the equations <p(h) = 1, x(h) = -1 follow from our conditions on b and

5 and Lemma 6.3 of [7]. Now let

M¥)2    -    .-(¥)'■
Then / and g are in 77°°(Í2) and

9(f) = 0,        T(/)=l,

^) = 1,        T(S)=0.

Furthermore, if z G Q., then

|/(z)| + |¿r(z)| = (l-/z(z))(l-^(z)) + (l+/;(z))(l+Mz))

1 + |/z(z)|2

2 < '

completing the proof.   D

The following lemma will be used in the proof of Theorem 3.

Lemma 2. Let j be an integer greater than 1, and let û,,... ,aJ,bl,... ,b¡ be

nonnegative numbers. Let e,, ... , e   be nonnegative numbers such that

ak + bk < l +ek        for k= I, ... J.

Then

ax +a2bx +a3bxb2 H-\-ajb[b2 ■ ■ ■bj_x < (1 + e,)(l + e2) ■ • • (1 +eß.
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Proof. We will prove this lemma by induction. For j = 2, we have

ax + a2bx <ax+bx (a2 + b2)

< ax +6,(1 +e2)

<a,(l +e2) + bx(l +e2)

<(l+e,)(l+£2),

as desired.

Now suppose that the lemma holds for j —I. Then

ax +a2bx +a3bxb2 -\-r-ß,A ■ "bji

= ax + 6,(a2 + a}b2 + a4b2b3 -\-\- ajb2 ■ ■ • b}_x)

< ax +6,(1 +e2)(l +e3)...(l +e;.)

<a1(l+e2)(l+e3)...(l+e;) + 61(l+e2)(l+e3)...(l+ej)

<(l+e,)(l + e2)...(l+e;),

and so the lemma holds for y , completing the proof.   G

We can now prove Theorem 3, the main result of the paper. Note that by

the nested intersection property for compact sets, for every sequence (9„)^LX

in M(77°°(Q)), there exists <p G f|" i Í9n ,9n+x, •••}•

Theorem 3. Let (9n)^Lx be a sequence in M(H°°(Q)), and let

oo

9tÇ\{9n,9n+{,...}.
n=\

Then either

9nGG((p) for infinitely many n

or

(9„)™=x has an interpolating subsequence.

Proof. Suppose that there are only finitely many n such that q>n G G(q>). We

will complete the proof by showing that in this case (9n)^Lx has an interpolating

subsequence.

Let (e„)~ , be a sequence of positive numbers such that

oo

(4) n(i+e«)<2-
n=\

Because tpnG G(<p) for only finitely many n , we can choose a positive integer

nx such that

<pk <$. G((p)        for all k > «,.

By Lemma 1, there exist fx,gx G H°°(Q) such that

9(A) = o,       *„,(/,) = 1,

f(^i) = Ii        «'„l(ii)=0,
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and

\fx(z)\ + \gx(z)\<l+ex for every z G fi.

Now suppose that j is an integer greater than 1 and that fx, ... ,f_x ,gx ,

■ ■ • > gj-\ > and «,,..., n _, have been chosen such that

9(ft)=-=9(fj-i) = 0        and        <p(gi) = ■■. = <p(gj_x) = \.

Because

{wGM(Hco(n)):\V(fx)\ + \ip(f2gx)\ + --- + \V(fj_xgx...gj_2)\<\and

\i-v(gl.>.gj-l)\<ii]

is an open subset of M(H°°(Q,)) containing <p , and because q> is contained in

the closure of {<pk : k >«•_,}, we can choose an integer ». > «._, such that

(5) |^.(/,)| + I^C/iS,)! + • • • + K,!/}-,*! ...Ä>_2)l < 3

and

(6) |1 -9„i(gl---gj-l)\ < i

By Lemma 1, there exist fi, g¡ G 77°°(fi) such that

9(fj) = 0,        9nj(fj)=U

9(gj) = U        9nj(gj) = 0,

and

(7) \fj(z)\ + \gj(z)\ < 1 + Cj        for every z G fi.

We now show that (ç>n )°1, is an interpolating sequence. Let i°° denote the

usual space of bounded sequences X = (Xn)°^=x of complex numbers with norm

defined by

||A||oo = sup{|A„|:«GZ+}.

Let X G £°° be such that PH^ < 1 . Define a function h on fi by

h(z) = A,/,(z) + A2/2(z)g,(z) + • • ■ + A/;.(z)^(z) • • • gj_x(z) + ■ ■ • ;

by Lemma 2 and inequalities (4) and (7), the partial sums of the absolute values

of the above infinite series are all less than 2, and so the infinite sum converges

(pointwise on fi ) and PH^ < 2. Because the pointwise limit of a sequence of

uniformly bounded analytic functions is analytic, we conclude that h G 77°° (fi).

Let j GZ+ . Then

\fHj(h)^Xj\ < |?„.(Vi + A2/2Si + ••• + *j-ifj-\g\ ■■•gj-2)\

(8) +*j-fiS*jfjSi-*j-i)\

+ \Vnj(gl ■ ■ ■ gj&j+lfj+} + ¿J + 2fj+2gJ + l

+ \*j+}fj+3gj+lgj+2 +
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where the infinite sum

*j+ifj+i + ^j+ifj+igj+x + *j+}Jj+-igj+igj+2 + ••■

converges pointwise boundedly to some function in 77°° (fi) by Lemma 2 and

inequalities (4) and (7). By inequality (5), the first term on the right-hand side

of inequality (8) is less than ± ; by inequality (6), the second term on the right-

hand side of inequality (8) is less than \ ; because 9n(g.) = 0, the third term

on the right-hand side of inequality (8) equals 0. Thus we have shown that if

X G i°° with PH^ < 1 , then there exists h G 77°°(fi) with H*^ < 2 such

that

\9„.(h) - Xj\ < \        for every ; G Z+.

In other words, using only functions from the ball of radius 2 of 77°°(fi), the

sequence (9n)°°=x can interpolate any element of the unit ball of ¿°° with an

error of at most j . This implies (see Lemma 4.1 of [4]) that (9n)j°=x is an

interpolating sequence, completing the proof.   D

On page 165 of [6], Kenneth Hoffman proved that if (9n)n=x is a convergent

sequence in M(H°°(D)) \ D, then all but a finite number of the <pn lie in the

same fiber (the fiber over a point X G dD is the set of all <p G M(H°°(D))

such that (p(z) = X). The fibers are much bigger than the Gleason parts in

M(H°°(D)) \ D, so the following corollary strengthens Hoffman's result (and

applies to an arbitrary open subset fi of C" ). Note that the following corollary

does not hold for nets, thus indicating the special role played by sequences.

Corollary 9. Let <p G Af(77oc(fi)) and suppose that (9n)°^=x   is a sequence in

M(77°°(fi)) such that <pn —> tp . Then

hmsupdQ(tp,<p ) < 1.
« —oo

In particular, <pn G G(<p) for all sufficiently large n .

Proof. Suppose false, so that

limsup<7n(f?,r?n) = 1.
n—*oo

We began the proof of Theorem 3 by assuming that tpn <£ G((p) for all suffi-

ciently large n, and concluded that (9n)^Lx has an interpolating subsequence.

The assumption that <pn <£ G(<p) was only used so that Lemma 1 could be

applied. Note, however, that the proof of Lemma 1 does not really require that

t ^ G(<p), but only that d(cp, t) be sufficiently close to 1 (how close depends

upon the e of Lemma 1). Thus given the sequence (e„)^Lx of the proof of

Theorem 3, we can choose a subsequence of da(q>, (pn) tending to 1 sufficiently

rapidly so that the proof of Theorem 3 works (because tpn —► tp, any subse-

quence of (<pn)°^=x captures <p in its closure, so the hypothesis of Theorem 3

holds). In other words, (9n)°^=x has an interpolating subsequence. However, no

convergent sequence can be an interpolating sequence (because the sequence of
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alternating l's and -l's cannot be interpolated). This contradiction completes

the proof.   D

If fi is connected, then the Shilov Idempotent Theorem ([3], Chapter III,

Corollary 6.5) shows that M(77°°(fi)) is connected. However, except for triv-

ial cases (for example, when 77°°(fi) consists of only the constant functions),

7V7(77°°(fi)) is not path connected. The following corollary shows that each path

connected component of M(H°°(Q)) is contained in a Gleason part. If fi is

the unit disk, then the path connected components of A7(77oc(fi)) are precisely

equal to the Gleason parts (see Corollary 12 in the next section). We do not

know whether this remains true when fi is a ball or polydisk in C (N > \).

Theorem 5.5 of [4] (also see Theorem 3.3 and Corollary 6.4 of [4]) shows that

there is a domain fi in C such that A7(7700(fi)) has a Gleason part that is not

path connected.

Corollary 10. Each path connected component of Af (77°°(fi)) is contained in a

Gleason part.

Proof. Let y : [0,1] —> M(H°°(Q)) be a continuous function. We need to prove

that y(l) G G(y(0)). Suppose that y (I) <£ G(y(0)). Let

r = sup{/G[0,l]:7(0GG(7(0))}.

We now break the proof into two cases.

Case 1. Suppose that y(T) G G(y(0)). Then T < 1 and y(T+\/n) -► y(T),

but for each n we have y(T + l/n) <£ G(y(T)), contradicting Corollary 9.

Case 2. Suppose that y(T) £ G(y(0)). Then T > 0 and there exists a

sequence (tn)^Lx c [0,T) such that tn —► T as n —► oo and y(tn) G G(y(0))

for every n. Thus y(tn) —* y(T) £ G(y(0)), contradicting Corollary 9 and

completing the proof.   D

The following corollary shows that except for trivial cases, M(77°°(fi)) is

rich in interpolating sequences.

Corollary 11. Let (9n)^Lx be a sequence in M(H°°(Q,)) such that for distinct

m and n, <pm and <pn are contained in distinct Gleason parts. Then (9n)™=x

has an interpolating subsequence.

Proof. By the nested intersection property, there exists tp G M(77°°(fi)) such

that
oo

9er\i9„>9„+l,•■-,}■
n=\

Our hypothesis implies that <pn G G(<p) for at most one n . Thus by Theorem

3, (9„)™=x has an interpolating subsequence, completing the proof.   D
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The unit disk

In the case where fi is the unit disk in the complex plane, most of the results

in the previous section were proved by A. Dufresnoy [2]. Dufresnoy's proofs

require that each element of M(H°°(Çl)) have a unique representing measure

on the Shilov boundary of 77°°(fi), and thus his proofs do not work even for

nice domains such as balls or polydisks in C (N > I). Even in the case where

fi is the unit disk in C, the proofs given in the last section (which apply to

arbitrary domains in C  ) seem to be easier than the proofs given by Dufresnoy.

Recall that D denotes the open unit disk in the complex plane. For each

tp G M(H°°(D)), there is a canonical map L of D onto G(tp) ; detailed

information about these maps was discovered by Hoffman [7] (also see [5],

Chapter X). In this section we use these canonical maps and Theorem 3 to

prove two results about M(H°°(D)).

We remarked before Corollary 10 that the following corollary does not hold

for arbitrary domains.

Corollary 12. The path connected components of M(H°°(D)) are precisely the

Gleason parts.

Proof. Let q> G M(H°°(D)). Then L is a continuous map of D onto G(q>).

Thus G(q>) is path connected. By Corollary 10, G(q>) is not contained in a

larger path connected subset of M(H°°(D)). Thus G((p) is the path connected

component of M(H°°(D)) containing (p , completing the proof.   D

For tp- a linear functional on H°°(D), let ||^|| denote the usual norm defined

by

IIHI = sup{\¥(f)\:fGH°°(D) and H/l^ < 1}.

The next corollary states that for a sequence in M(H°°(D)), convergence in the

usual weak-* topology of M(H°°(D)) is equivalent to norm convergence and

to convergence in the metric dD (this is false if sequences are replaced by nets).

We believe that Corollary 13 might remain true if the unit disk is replaced by an

arbitrary domain in C , but the tools used in the proof below are not available

even for nice domains such as balls or polydisks in C  (N > 1).

The proof of the next corollary will use the following results (see [7] or Chap-

ter X of [5]): For each q> g M(H°°(D)), there exists a continuous function

L9:D^ M(H°°(D)) such that

LJD) = G((p);

LJ0) = 9;

if G(<p) ̂  {(p), then L   is injective;

if / G H°°(D), then the map that sends w to (L (w))(f) is analytic on

D.   The map from D to C that sends w  to  (L (w))(f)  will be denoted
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by f o L ; this notation is natural if / is identified with its Gelfand trans-

form. Thus if / G H°°(D) and <p G M(H°°(D)), then foL^G H°°(D) and

ll/s^lloo^H/lloo-

Corollary 13. Let (9n)^Lx be a sequence in M(H°°(D)) and let <p G

M(H°°(D)). Then the following are equivalent:

(a) <pn^<pinM(H°°(D))-

(b) dD(<pn,<p)^0;

(c) K-pII-o.

Proof. First suppose that (a) holds, so that (pn —» tp in M(H°°(D)). To prove

that (b) holds, first note that by Corollary 9, we can assume (by deleting a finite

number of terms from the sequence (9n)°^=x) that

(14) sup{dD(tpn,tp):nGZ+}< 1.

In particular, <pn G G(<p) for each n. Thus for each n there exists wn g D

such that L (wn) = <pn . If G(<p) = {tp}, then 9n = 9 for each n, and so (b)

holds. Hence we can assume that G(tp) ^ {(p). Thus

\w„\=dD(Wn,0)

(15) =dD(Lv(wn),Lv(0))

= dD(<pn,<p)        for all« G Z+,

where the second equality above follows from equation (6.1 ) of [7]. By the above

equality, to prove that (b) holds we need only show that ^-»0. Suppose

that this fails. Then the above equality and inequality ( 14) show there exists a

subsequence (wn )°^, and w G D\{Q) such that wn —>• w as j —► oo. Because

L is continuous, we have tpn = L (wn) —» L (w) as j —► oo. Recalling that

<pn —► tp , we conclude that L (w) — <p , which implies (because L is injective)

that w = 0. This contradiction completes the proof that (a) implies (b).

Now suppose that (b) holds. To prove that (c) holds, note that by deleting a

finite number of terms from the sequence (9n)™=x , we can assume that (pn G

G(<p) for all n GZ+ . As above, let wn G D be such that Lv(wn) - <pn . Once

again, if G(q>) — {q>} then 9n — 9 and (c) obviously holds, so we can assume

that G(q>) = {(p). Thus by equation (15), we have wn —> 0, and so we can

assume that \wn\ < \ for all n . Let /g H°°(D). Then

\9n(f) - 9(f)\ = \(f°L,)(w„) - (f°L9){0)\

<2lw.Hl/lL,

where the first inequality comes from the Cauchy integral formula. The above

inequality implies that \\(pn -(p\\ -* 0, completing the proof that (b) implies (c).

Clearly (c) implies (a), completing the proof of the corollary,   o
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