ON INDUCED COVARIANT SYSTEMS

SIEGFRIED ECHTERHOFF

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. For a closed subgroup H of a locally compact group G, it is shown that a covariant system (G, A) is induced from a covariant system (H, D) if (and only if) there exists a continuous G-equivariant map φ : Prim $A \to G/H$.

Let H be a closed subgroup of a locally compact group G such that H acts strongly continuously by *-automorphisms on a C^* -algebra D. Then the induced C^* -algebra Ind D is defined by

Ind
$$D := \{ f \in C^b(G, D) ; f(xh) \stackrel{h^{-1}}{=} (f(x)) \}$$

for $x \in G$, $h \in H$ and $||f(\cdot)|| \in C_0(G/H) \}$,

where $C^b(G,D)$ denotes the space of all D-valued bounded continuous functions on G and $C_0(G/H)$ the space of continuous functions on G/H which vanish at infinity. If we define an action of G on $\operatorname{Ind} D$ by $^xf(y)=f(x^{-1}y)$ for all $f\in\operatorname{Ind} D$ and $x,y\in G$, then the pair $(G,\operatorname{Ind} D)$ becomes a covariant system, the so-called induced covariant system of (H,D). It is well known that there is a continuous G-equivariant map $\varphi\colon\operatorname{Prim}(\operatorname{Ind} D)\to G/H$, which is defined by $\varphi(J)=xH$ if J contains the ideal $I(x):=\{f\in\operatorname{Ind} D;f(x)=0\}$. The following theorem shows that conversely every covariant system (G,A) having this property is isomorphic to a system $(G,\operatorname{Ind} D)$, in the sense that there exists a G-equivariant isomorphism Φ from A onto $\operatorname{Ind} D$.

Theorem. Suppose that (G,A) is a covariant system, H a closed subgroup of G, and φ : Prim $A \to G/H$ a continuous G-equivariant map. Furthermore let $I = \cap \{J : J \in \varphi^{-1}(\{eH\})\}$ and D = A/I. Then (G,A) is isomorphic to $(G,\operatorname{Ind} D)$, where the G-equivariant isomorphism $\Phi: A \to \operatorname{Ind} D$ is given by $\Phi(a)(x) \stackrel{x^{-1}}{=} a + I$, for $a \in A$ and $x \in G$.

Received by the editors February 20, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46L05; Secondary 22D30. Key words and phrases. Induced covariant system, C*-algebra, locally compact group, Mackeymachine.

For proving this theorem we need the following lemma.

Lemma. Suppose that \mathscr{F} is a subspace of Ind D such that for every $x \in G$ the space $\mathscr{F}(x) := \{f(x); f \in \mathscr{F}\}$ is dense in D. If \mathscr{F} is invariant under multiplication with continuous functions of compact supports on G/H, then \mathscr{F} is dense in Ind D.

Proof. Let $g \in \operatorname{Ind} D$ and $\varepsilon > 0$ be given. We choose a compact subset K of G/H such that $\|g(x)\| < \varepsilon/2$ for every $xH \notin K$. If q denotes the quotient map from G onto G/H, then we can find a compact subset C of G such that q(C) = K. Now for every $x \in C$ there exist $f_x \in \mathscr{F}$ and a compact neighborhood V_x of x in G such that $\|f_x(y) - g(y)\| < \varepsilon/2$ for every $y \in V_x$. Since C is compact, it is covered by finitely many V_{x_1}, \ldots, V_{x_n} . Thus K is covered by W_1, \ldots, W_n , where $W_i = q(V_{x_i})$ for $i = 1, \ldots, n$. Now let ψ_1, \ldots, ψ_n be a partition of unity for K such that $\sup \psi_i \subseteq W_i$ for every $i \in \{1, \ldots, n\}$. Then, for $f(x) = \sum_{i=1}^n \psi_i(xH) f_{x_i}(x)$, we obtain

$$\begin{split} & \| f(x) - g(x) \| \\ & \leq \left\| \sum_{i=1}^{n} \psi_{i}(xH) (f_{x_{i}}(x) - g(x)) \right\| + \left\| \left(1 - \sum_{i=1}^{n} \psi_{i}(xH) \right) g(x) \right\| \\ & \leq \sum_{i=1}^{n} \psi_{i}(xH) \| f_{x_{i}}(x) - g(x) \| + \left(1 - \sum_{i=1}^{n} \psi_{i}(xH) \right) \| g(x) \| \\ & < \varepsilon/2 + \varepsilon/2 = \varepsilon \end{split}$$

for all $x \in G$, which completes the proof.

Proof of the theorem. Firstly we show that $\Phi(a)$ is in fact an element of Ind D, for D = A/I. The continuity of $\Phi(a)$ follows from the continuity of the map $x \xrightarrow{x} a$. For $x \in G$ and $h \in H$ we have

$$\Phi(a)(xh) \stackrel{h^{-1}x^{-1}}{=} a + I \stackrel{h^{-1}}{=} (\Phi(a)(x)).$$

$$\|\Phi(a)(x)\| = \|a + I\| = \sup\{\|x^{-1}\| (a)\|; \pi \in \widehat{A/I}\}\$$
$$= \sup\{\|x^{-1}\| (a)\|; \pi \in \widehat{A/I}\} \le \varepsilon$$

for every $xH \notin \tilde{\varphi}(Q)$. This proves the claim.

Now it is clear that Φ is a well-defined *-homomorphism from A into Ind D, which is isometric since $\bigcap \{^x I : x \in G\} = \{0\}$. It remains to show that Φ is onto. This follows from the lemma and the trivial fact that

$$\{\Phi(a)(x); a \in A\} = A/I$$

for all $x \in G$, as soon as we have shown that $\Phi(A)$ is invariant under pointwise multiplication with elements of $C_0(G/H)$. For this let $\psi \in C_0(G/H)$ and $a \in A$. Then $\tilde{\psi} = \psi \circ \varphi$ is an element of $C^b(\operatorname{Prim} A)$. Using [2, Theorem 5] in the context of multiplier algebras, we see that there is a unique $z \in Z(\mathcal{M}(A))$, the center of the multiplier algebra $\mathcal{M}(A)$ of A such that $\tilde{\psi}(J)a - za \in J$ for every $J \in \operatorname{Prim} A$. Since $\tilde{\psi}$ is equal to $\psi(xH)$ on $\varphi^{-1}(\{xH\})$ it follows that

$$\psi(xH)a - za \in {}^{x}I = \bigcap \{J ; J \in \varphi^{-1}(\{xH\})\}\$$

for all $x \in G$. Hence

$$\psi(x\overset{x^{-1}}{H})a\overset{x^{-1}}{-}(za)\in I$$

and therefore

$$\psi(xH)\Phi(a)(x) = \Phi(za)(x)$$

for every $x \in G$. This finishes the proof.

By Proposition 3.1 of [5] the space $\widehat{Ind}D$ of all equivalence classes of irreducible representations of $\widehat{Ind}D$ is homeomorphic to $(G\times\widehat{D})/H$, where the action of H on $G\times\widehat{D}$ is given by $h(x,\pi)=(xh^{-1},{}^h\pi)$ for $h\in H$ and $(x,\pi)\in G\times\widehat{D}$. Note that in [5], $\widehat{Ind}D$ is denoted by $HC(G,D)^\alpha$. Thus, from the theorem we get the following corollary.

Corollary 1. Let (G,A) be a covariant system, H a closed subgroup of G, and φ : Prim $A \to G/H$ a continuous G-equivariant map. Then \widehat{A} is homeomorphic to $(G \times \widehat{A/I})/H$ where $I = \bigcap \{J; J \in \varphi^{-1}(\{eH\})\}$ and the action of H on $G \times \widehat{A/I}$ is defined as above.

This corollary allows an interesting application to locally compact transformation groups. If H is a closed subgroup of G such that H acts jointly continuously on a locally compact space Y, then H acts on $G \times Y$ by $h(x,y) = (xh^{-1},hy)$. The quotient space $(G \times Y)/H$ is usually denoted by $G \times_H Y$. Now G acts on $G \times_H Y$ by inverse left translation of the first component, and it is easily seen that $C_0(G \times_H Y)$ is G-isomorphic to $Ind(C_0(Y))$. Hence we obtain the following result which shows that Situation 4 and Situation 7 of [7] are the same.

Corollary 2. Suppose that (G,M) is a locally compact transformation group, $\varphi \colon M \to G/H$ a continuous G-equivariant map, and $Y = \varphi^{-1}(\{eH\})$. Then (G,M) is homeomorphic to $(G,G\times_H Y)$ is the sense that there is a G-equivariant homeomorphism between $G\times_H Y$ and M.

Remark. One can use our theorem, at least in the case of a trivial twisting map, to give a relatively simple proof of [3, Theorem 17], which is the main part

of Green's deduction of the Mackey-machine. In fact Green's theorem follows immediately from the Morita equivalence of the crossed product algebras $C^*(H,D)$ and $C^*(G,\operatorname{Ind}D)$. This is a special case of Raeburn's symmetric imprimitivity theorem in [6], but it seems to us that a direct proof of this special case would be a little bit simpler than the proof of Raeburn's more general result. Finally, note that Raeburn also has shown that Green's theorem is a consequence of his symmetric imprimitivity theorem, using substantially the symmetry of his result [6, Special case 2.4].

REFERENCES

- 1. J. Dixmier, C*-algebras, North-Holland, Amsterdam, 1977.
- 2. ____, Ideal center of a C*-algebra, Duke Math. J. 35 (1968), 375-382
- 3. P. Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), 191-250
- 4. G. Pederson, C*-algebras and their automorphism groups, Academic Press, London, 1979.
- I. Raeburn and D. P. Williams, Pull-backs of C*-algebras and crossed products by certain diagonal actions, Trans. Amer. Math. Soc. 263 (1985), 755-777.
- 6. I. Raeburn, Induced C*-algebras and a symmetric imprimitivity theorem, Math. Ann. 280 (1988), 369-387.
- 7. M. A. Rieffel, Applications of strong Morita equivalence of certain transformation group C*-algebras, Operator algebras and applications, Proc. Symposia in Pure Math. 38, Part 1, 299–310, Amer. Math. Soc., Providence, RI, 1982.

FACHBEREICH 17, MATHEMATIK-INFORMATIK, UNIVERSITÄT GESAMTHOCHSCHULE PADERBORN, WARBURGER STRABE 100, D-4790 PADERBORN, WEST GERMANY