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Abstract. It was shown in [5] that the generators of the homotopy groups of

the stable orthogonal groups and the stable Grassmannians can be represented by

embedded totally geodesic spheres of constant curvature. In this paper we prove

that all elements of the above-mentioned homotopy groups can be represented

by such spheres.

Introduction

The infinite orthogonal group O is, by definition, the direct limit of 0(h)

with respect to the inclusion maps 0(n) —> 0(n + 1). Similarly, the infinite

Grassmannian 770 is defined as the direct limit of Gn(R ") with respect to the

inclusion maps Gn(R") —> t7n+1(R2"+2).   BO is homotopy equivalent to the

classifying space of O given by the construction of J. Milnor.

A map f:Sm^O (resp. Sm —» BO) is said to be totally geodesic, if it maps

Sm totally geodesically into some 0(n) (resp. some Gn(Rn)). In [5], Rigas

proved that for every m > 1, the generators of the groups nmO and nmBO can

be represented by totally geodesic spheres of constant curvature. In this paper,

we will prove that exactly the same conclusion is true for all the elements of

nm(0) and nmBO. The totally geodesic spheres in 0(n) constructed in § 1 are

given by Clifford orthogonal multiplications while those in Gn(R ") are given by

orthogonal representations of C0 , , the Clifford algebra on Rm+ endowed

with a negative definite inner product. These are, moreover, just the isoclinic

spheres [7, 8] in the real Grassmannians. They also occur, in a different form,

in the geometry of a class of isoparametric hypersurfaces in S n~ (cf. [2, 6]).

The results in [6] enable us to identify them in nmBO.
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Our approach, which makes use of results of Atiyah, Bott and Shapiro, is far

simpler than that of [5].

1. Clifford modules

We recall here a number of results connecting the Clifford algebra with the

KO-groups of the spheres which are needed in the following sections. The

reader is referred to [1] and [3] for details.

Let Cm be the Clifford algebra generated by \ ,ex, ... ,em subject to the

relations

(1.1) ^, + ^. = -2^..

Since Cm_x =Cm and Spin(m) is a subgroup of the multiplicative group of

invertible elements of Cm , a Cm_x module is canonically a Spin(w) module.

G = Spin(«z + 1) acts transitively on Sm c Cm+X with isotropy subgroup

77 = Spin(«i).  G is the total space of an 77-principal bundle over Sm .

Let M be a Cm_x module; it is also an 77-module. One constructs the

vector bundle a(M) = GxHM associated to the 77-principal bundle G. a(M)

represents an element of KO(Sm), the group of stable bundles over Sm .

Every Cm_, module can be made orthogonal, i.e. one can put a positive

definite inner product on M such that the multiplications by e{ are orthogo-

nal transformations of M. Moreover, let Rm be the vector subspace of Cm_x

spanned by 1 , ex, ... ,em_x endowed with the inner product for which 1,

e\ » • • • iem-\ are orthonormal. Then it is easy to see that the Clifford multipli-

cation

(1.2) RmxM^M

is orthogonal, i.e. ||Ax|| = ||/l|| • ||x||. In this case, the vector bundle a(M) has

a bundle metric hence a characteristic map Sm'    —> 0(1) where / = dim M.

Lemma 1. If M is an orthogonal Cm_x  module, then the characteristic map

Sm~ —► 0(l) is given by regarding Sm~ as the unit sphere of Rm and com-

posing with the orthogonal multiplication (1.2).

Proof. This follows directly from Proposition (13.2) in [1].

It is well known from 7C-theory that nmBO = KO(Sm) = nm_, O, the last iso-

morphism being given by the characteristic maps of vector bundles in KO(Sm).

Let N(Cm_x) be the free Abelian group generated by isomorphism classes

of irreducible Cm_] modules. The map M >-■ a(M) extends to a group homo-

morphism a: N(Cm_x) —> KO(Sm). Since a clearly annihilates the image of

i* : N(Cm+x) —► N(C ), where i is the inclusion, it induces a homomorphism

a: Am -> KO(Sm) where A    is the cokernel of i*: N(CJ -» N(Cm_x).
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The following is a special case of Theorem 11.5 in [1].

Lemma 2.  a is an isomorphism of groups.

It is well known that when m ^ 0 (mod 4), there is, up to isomorphism,

only one irreducible Cm_x module. However, when m = 0 (mod 4), there

are two: A^ and A~ (of the same dimension). Decompose M ; we can write

M = aA^n + bA'm as Cm_x modules, where a and b are natural numbers. The

number q = a-b is called the index of M. It is the only algebraic invariant of

the Cm_x module M. a(A+m) + a(A~) = 0, since A++A" isa Cm module.

Lemma 2 reduces the computation of KO(Sm) to a purely algebraic problem.

For example the periodicity of nmO follows from that of Am . But the specific

results of the computations are not needed in this paper.

2. Totally geodesic spheres in O(n)

Let M be an orthogonal Cm_x module of dimension /. One has I — k3(m),

where k  is a natural number,  3(m)  is the dimension of irreducible Cm_x

modules. Let Rm x R —> R be the orthogonal multiplication defined by (1.2)

and Sm~ be the unit sphere in Rw . One has a natural map fM: Sm~ —► 0(1)

given by (1.2). Let fM = i° fM where i: 0(1) —► O is the inclusion.

Theorem 1.

(a) fM is a totally geodesic embedding of Sm~ onto a sphere of constant

curvature in O.

(b) If m * 0 (mod 4), [fM] = kgm ; if m = 0 (mod 4), [fM] = qgm ,
where gm is a generator of nm_xO (gm is 0 if nm_xO = 0 by convention), q

is the index of M defined in § 1.

Proof, (b) follows directly from Lemma 1 and Lemma 2. (a) is a direct conse-

quence of the following:

Lemma 3. Let V be a Euclidean vector space, E c End V a vector subspace

such that E n 0(V) = S(E), the unit sphere of E with respect to the inner

product (A,B) = (l/dimV)  tr AB''. Then S(E) is totally geodesic in O(V).

Proof. Let y be a geodesic in S(B). y = S(E) n P, where P is a 2-plane in

E . We want to show that y is a geodesic in 0(V).

Let Tx, T2 be orthonormal in P. y is the subset of E given by cos 6TX +

sindT2. Since y lies on 0(V), a simple computation shows that J = TXT2 is

skew symmetric and J  = —I. Therefore

cos or, + sin 6T-, = T, (cos 6 + sin 8J),

and the right-hand side is clearly a parametrization of a geodesic in 0(V).

Q.E.D.

Corollary 1. For all m > 1, every element of nmO can be represented by a

totally geodesic sphere of constant curvature in O.
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3. Totally geodesic spheres in Gn(R ")

Let CQ     , be the Clifford algebra on Rm+   with respect to a negative definite

inner product on Rm+ . An orthogonal representation of C0 m+x on R is

uniquely determined by a set of m + 1 elements P0, ... , Pm G 0(21) such that

(3.1) PiPj+PjPi = 23ijI.

Let E be the m + 1-dimensional vector subspace of End(R2/) spanned by

P0, ... ,Pm and Z be the unit m -sphere in E with respect to the inner product

(A,B) = (\ ¡21) tr AB' on End(R2/). For any P g I, it is clear that P2 = I and

P is symmetric. The +1 and -1 eigenspaces of P are of dimension /.

There is a map fT: S —* G¡(R  ) defined by

f?_(P) — +1 eigenspace of P,

with the following property:

(3.2) Qfz(P) = fz(QPQ),      p,QgZ.

Proposition 1. fT is a totally geodesic embedding onto a sphere of constant cur-

vature in G¡(R  ).

Proof. The set (3.1 ) has the following property: for any x G R of unit length,

the vectors P0x, Pxx, ... , Pmx are orthonormal in R2 . Therefore, for P, Q G

1, 7> # <2 implies that Px^Qx. Hence fT(P) n fz(Q) = 0 if P ¿ Q. Since

X = En 0(R2 ), where E is Span(7>0, ... ,Pm), it follows from Lemma 3 that

I is totally geodesic in 0(21).

Let F be the  +1   eigenspace of PQ .   The action of 0(2/)  on F gives a

fibration nF : 0(2/) -+ G^R2 ). Then it is easy to verify that I is orthogonal

to the fiber of nF at 7^ . Since nF is a Riemannian submersion, it follows that

nF maps geodesies of Z emanating from PQ to geodesies of G¡(R ). Since

P0 is arbitrary and nF(X) = fzCL), it follows that ^(1) is totally geodesic in

G/(R2/). Finally, let X, Y be 2 orthonormal tangent vectors to Z at PQ G 0(2/)

and K,K* be the sectional curvature of 0(2/) and G¡(R ), respectively. Since

I is totally geodesic in 0(2/) and horizontal at P0, it follows immediately

from O'Neill's curvature formula for submersions that K*(nF(X) ,nF(Y)) =

K(X,Y) + 3||^r||2 where AXY = {2[X,Y]V is the fundamental tensor for

nF, cf. [4]. An easy computation shows that IM^TH = 1, thus fz(Z) has

constant curvature.

Remark 1. From [7] and [8] we know that the spheres fz(E) are isoclinic in

that any two distinct /-planes in fzCL) are at constant angle to each other.

Remark 2. It follows from [7] that the converse of Proposition 1 is true. In

other words, any isoclinic sphere in G,(R ) is of the form ./¿(E) for some

P0,...,Pm satisfying (3.1).
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It remains to identify the homotopy classes of i o fz(L) in nmBO, where

i: C7„(R2") -» 770 is the inclusion.

It is known that (cf., e.g., [2]) there is a 1-1 correspondence between orthog-

onal representations of Cm_x on R and C0 m+x on R . In particular, one

has / = k5(m), k a natural number. Moreover

(3.3) tr(P0...PJ = 2q3(m).

Here q is called the index of P0, ... , Pm . If m ^ 0 ( mod 4), q is necessarily

zero. If m = 0 (mod 4), q can take any integer values between —k and k

subject only to the condition q = k   (mod 2).

Theorem 2. If m ¿ 0 (mod 4), [^(1)] = /c#m. If m = 0 (mod 4),

[/j;(2)] = <7¿?m , where gm is a generator of nmBO (gm = 0 if nmBO = 0 by

convention).

Proof. Let y¡ be the canonical rank / vector bundle over G¡(R ) and ¿¡ =

fz(y¡), the induced bundle over Sm . It was shown in [2] that the sphere bundle

of t; is diffeomorphic to the focal variety N of an isoparametric function on
21— 1

S      . In [6], Proposition 1 gave a bundle isomorphism

a(M)^H,

where M isa Cm_x module of dimension / and index q. The theorem follows

at once in view of Lemma 1 and Theorem 1.

Corollary. For every m > 1, all elements of nmBO can be represented by totally

geodesic spheres of constant curvature in BO.
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