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BOUNDS FOR THE ORDER

OF SUPERSOLUBLE AUTOMORPHISM GROUPS

OF RIEMANN SURFACES

REZA ZOMORRODIAN

(Communicated by B. Srinivasan)

Abstract. The maximal automorphism groups of compact Riemann surfaces

for a class of groups positioned between nilpotent and soluble groups is inves-

tigated. It is proved that if G is any finite supersoluble group acting as the

automorphism group of some compact Riemann surface Í2 of genus g > 2 ,

then:

(i) If g = 2 then \G\ < 24 and equality occurs when G is the supersoluble

group At ® Z3 that is the semidirect product of the dihedral group of order 8

and the cyclic group of order 3. This exceptional case occurs when the Fuchsian

group T has the signature (0;2,4,6), and can cover only this finite supersoluble

group of order 24.

(ii) If g > 3 then \G\ < 18(# - 1), and if |G| = lS(g - 1) then (g - 1)
must be a power of 3. Conversely if (g - 1) = 3" , n > 2 , then there is at least

one surface fí of genus g with an automorphism group of order 18(^ - 1)

which must be supersoluble since its order is of the form 2-3m . This bound

corresponds to a specific Fuchsian group given by the signature (0;2,3,18). The

terms in the chief series of each of these Fuchsian groups to the point where a

torsion-free subgroup is reached are computed.

0. Introduction

The comprehensive work of C. H. Sah is a landmark paper [8]. In addi-

tion to considering soluble groups as one class and establishing a necessary

and sufficient condition for a Fuchsian group to cover a finite soluble group,

he showed that several of the sporadic finite simple groups, such as the small

Janko group, are "Hurwitz groups". Sah made a breakthrough by defining the

" /^-periods" of a Fuchsian group T for any prime p which divides the products

of the periods. He also stated that, since the "Hurwitz groups" (the maximal

automorphism groups of order 84(g - 1) ) always have simple non-abelian ho-

momorphic image and cannot be soluble, the maximal order of the soluble
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automorphism group must be 48(g - 1). This upper bound occurs when T is

the group of the signature (0;2,3,8). In a later paper entitled "Residual Nilpo-

tency of Fuchsian Groups", A. M. Macbeath [7] took this process a significant

step further by defining for each Fuchsian group Y a p-localization group T ,

which was also, in general, a Fuchsian group. In a paper entitled "Nilpotent

Automorphism Groups of Riemann Surfaces", this author [ 12] used the meth-

ods of Siegel and Macbeath to present a complete solution to the "nilpotent"

analogue of Hurwitz' theorem and obtained the bound I6(g — 1) for the or-

der of the maximal nilpotent automorphism groups. The groups of maximal

order turned out to be all 2-groups, i.e., those which had a power of 2 for an

order. The present paper studies yet another class of automorphism groups of

Riemann surfaces of g > 2 called supersoluble automorphism groups. These

groups are positioned between nilpotent and soluble groups and are finite and

soluble. Since the derived group of a finite supersoluble group is nilpotent [11]

and a finite nilpotent group is the direct product of its Sylow-subgroups, the

abelianizing homomorphism which factors out the derived group Y1 of T(S)

and which contains the maximal abelian factor group of T plays a key role in

this investigation of supersoluble automorphism groups. Moreover, a theorem

of D. Singerman [10] often has been used in computing the signature of the

derived group T1 of T. The results are as follows: Suppose G is any finite

supersoluble group of automorphisms of some Riemann surface Í2 of genus

g > 3. Then |G| < I8(g - 1), and if \G\ = lS(g - 1) then (g - 1) must
be a power of 3. Conversely, if (g - 1) = 3" then there is at least one sur-

face fi of genus g with an automorphism group of order 18(g - 1) which

must be supersoluble since it has an order of the form 2 • 3m. This bound

corresponds to a Fuchsian group given by the signature (0;2,3,18). It will be

proven that the supersoluble groups take their upper bound among the (2,3, n)

triangle groups with the exception of one group of low order when T has the

signature (0 ; 2,4,6) which can only cover one group of order 24. It will also

be proven that, among the (2,3, n) triangle groups, only the (2,3,6r) groups

should be considered. Oddly enough, the only candidates happen to be the two

triangle groups (2,3,12) and (2,3,18), both with nilpotent-admissible de-

rived groups of signatures ( 1 ; 2) and ( 1 ; 3), respectively, along with extremely

similar structures in their derived series. Although these two groups both admit

factor groups with Sylow tower properties, only (2,3,18) is supersoluble.

1. Notations

Let T as usual be any cocompact Fuchsian group, that is one with the quo-

tient space 77 /T, where 77 is the complex upper-half plane and T has the

presentation
■

(1.1) T= (ax,bx, ... ,ag,bg,xx, ... ,xr\x™', n^TI^'^O >
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for all i = 1,2, ... ,r, where g >0, r > 0, mi > 2, and [a, b] = aba lb ,

see [2, 7, 12, 13]. We then say T has signature

(1.2) S = (g;mx,...,mr).

The integers m ¡'s are called the periods and g is called the genus. If r = 0,

T will be called a surface group denoted by the signature ( g ; ). If all mt > 2,

S is said to be reduced, otherwise nonreduced. If T has signature S, we write

T = T(S). If g = 0 and r = 3 we call (0;l,m,n) a triangle group. The

rational numbers:

(1.3) X(S) = 2-2g + J2
i=i

(1.4) Y = -X(S)

are called the Euler characteristic, and its negative, of the signature S. The

signature S is called degenerate if its reduced form satisfies one of the following:

(a) g = 0 and r = 1 or

(b) g = 0 and r = 2, m¡ ^ m2,

otherwise S will be called nondegenerate. For each / = 1, ... , r, let pa' be

the highest power of the prime p which divides m¡. We then call the signature

(1.5) Sp = (g;pa\...,pa')

the p-localization of S [7]. If every period of S is already some power of

one fixed prime p we then call 5 a p-local signature. We call the signature

S nilpotent-admissible if every p-local signature S of S is nondegenerate. If

S is nondegenerate and Tx is a subgroup of finite index in Y(S), then there

exists a signature Sx such that Tx = T(SX ) and has index given by the formula

(1.6) [T:rx] = x(Sl)/x(S).

A homomorphism / from a Fuchsian group T(S) onto a finite group G which

preserves all the periods of T, i.e., for every x¡ of order m¡ the order of f(x¡)

is precisely m:, will be called smooth. Up is a prime number then / is called

p-smooth if the order of f(x¡) is divisible by the highest power p"' of p which

divides m¡. If f is smooth then ker(/) will be a Fuchsian surface group. A

finite group G which has such a smooth homomorphism onto it will be called

a smooth quotient group of Y. A homomorphism of particular importance in

this paper is the abelianizing homomorphism 6 which factors out the derived

group Y1 = [T: T] of T(S), and its factor group is the maximal factor group

of r of abelian nature. Thus if O: T(S) —y G is any smooth homomorphism

mapping T(S) onto any finite group G, then <I> can always be regarded as the

composition of 6 with some other homomorphism 4* which maps Y/Y1 onto

G. Moreover the composition 4* o 6 will have a torsion free kernel.

m
- 1
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2. Some basic existing results

on finite supersoluble groups

In this section we merely state some definitions and theorems on finite su-

persoluble groups. For a proof of any of the theorems the reader is referred to

M. Weinstein [11]. Since in the next sections where the main results are ob-

tained the reader is often referred to some existing results on finite supersoluble

groups we devoted this section for reference simply to facilitate the work of the

readers.

Definition 2.1. If G is any finite group and Gx and G2 are normal subgroups

of G with Gx < G2, then G2/Gx is called a chief factor or principal factor of

G if there is no normal subgroup G3 of G such that

GX<G3<G2.

Definition 2.2. A finite group G is said to be supersoluble whenever all the chief

factors in any chief series of G are cyclic of prime order.

Theorem 2.3. (i) Every subgroup of a supersoluble group is supersoluble.

(ii) Every homomorphic image of a supersoluble group is supersoluble.

(iii)  The direct product of any two supersoluble groups is supersoluble.

Theorem 2.4. Let G be any finite group with a normal cyclic subgroup Gx such

that G/Gx is supersoluble. Then G is supersoluble.

Definition 2.5. Let G be a finite group and let px < p2 < ■ ■ ■ < pr be the

distinct primes dividing the order of G. Then G is said to satisfy the Sylow

tower property if, for the p¡ -Sylow subgroups G   , G   , ... ,G    of G, we have

GnG„    ...G„  is normal in G for all k = 1,2,3, ... , r.
Pr      Pr-I Pk ■>■>•>■>

Definition 2.6. Let p be any prime. A group G is said to be strictly p-closed

whenever G , a Sylow /^-subgroup of G, is normal and when G/G is abelian

of the exponent dividing p - 1 .

Theorem 2.7. The derived group G' -[G,G] of a finite supersoluble group G

is a nilpotent group.

Theorem 2.8. Every maximal subgroup of a finite supersoluble group G has a

prime index in G.

Theorem 2.9. Every group G which is strictly p-closed is supersoluble.

Theorem 2.10. The group G is supersoluble if and only if

(i) G satisfies the Sylow tower property and

(ii) For every Sylow p-subgroup G of G, the quotient group NG(G )/

CG(G ) is strictly p-closed, where NG and CG are the normalizer and

centralizer respectively.
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3. Bound for the order of

supersoluble groups of automorphisms

In this section we study another class of automorphism groups of a com-

pact Riemann surface called supersoluble automorphism groups. We consider

all those homomorphisms of Fuchsian groups targeting the finite supersoluble

groups, and find an upper bound for these target groups. We also obtain some

results on the supersoluble smooth quotient groups. But first the following two

theorems give some relationships between finite supersoluble groups and cocom-

pact Fuchsian groups.

Theorem 3.1. Let Y be a finitely generated cocompact Fuchsian group with sig-

nature S = (y;mx,m2, ... , mr). Let G be a finite supersoluble group covered

by Y(S). Then Y1 = [r, T] the derived group of Y has a nilpotent-admissible

signature.

Proof. Let </>: T(S) —* G be a smooth homomorphism onto G. Abelianizing

both T and G, and letting S: Y^ Y/Y" and 0: G -» G/G' (where T* = [Y,Y]
and G' = [G, G] are the commutator subgroups of Y and G respectively) be

the two canonical homomorphisms. Then there must exist another homomor-

phism if/: Y/Y1 —> G/G' such that the following diagram commutes:

<P(Y)     -►    G

[s e[

W(Y/YJ) -> G/G'

that is 6o(f> = poo. Clearly if y e Y(S) and 4>(y) = g eG, then S(y) =
yY1 and 8(g) = gG'. Therefore if we define y/ by yz(yY') = (p(y)G' where

4>(y) e G, then we have y/(S{y)) = gG' - 6(g) - 6(<f>(y)), which is true for

all y G Y(S). Now letting y = 1 , that is, the identity of Y(S), we obtain

¡//(Y1) = G'. This proves that the homomorphism y/ is a covering from Y1

onto the derived group G' of G. By theorem (2.7) of the last section, G' is

nilpotent, that is, Y1, the derived group of Y, can cover at least one nilpotent

Riemann surface automorphism group. Hence by a theorem of Macbeath [7,

p. 309] Y1 must have a nilpotent-admissible signature, i.e., one whose p-local

signatures are all nondegenerate.

Theorem 3.2. Let S = (0 ; mx... , mr) be a signature of genus 0 and G a finite

supersoluble automorphism group covered by Y(S). Let H(S) denote the set of

prime factors of mxm2...mr, and let px = min{n(5')}, we have :

(i) px is the smallest prime divisor of order of G and the Sylow px-subgroup

of G is a smooth factor group of Y(S).

(ii)  The p ̂ localization of the signature S is nondegenerate.

Proof. Let qx < q2 < ■ ■ ■ < qk be the distinct prime factors of the order of

G. Since G is supersoluble it must satisfy the Sylow-tower property, i.e., for



592 REZA ZOMORRODIAN

the Sylow o-subgroups Gn , ... ,Gn , the group N = Gn Gn     •••G.   must be
' H\ Hk Q k      Hk — 1 Q2

normal in G. G/N is a factor group of G. Thus there exists a homomorphism

F: G —► G/N whose kernel has an order relatively prime to qx . Next, since

Y(S) covers G there exists a smooth homomorphism <P: Y(S) —► G onto G.

Therefore the composition of F and O is a homomorphism (7o$): T(5) —►

G which is again smooth. This shows that G is a homomorphic image of

Y(S), and by Theorem 5.3 [7, p. 304] there exists a unique homomorphism

O : Y(S„ ) -* G such that 7o$ = 0 o 7. where L : HS) -» ÏÏJ, ) is

the qx -localization homomorphism [7]. This proves G is a smooth homo-

morphic image of Y(S ). Therefore, qx e Yl(S), because if qx $ Yi(S) the

<?,-localization of Y(S) is trivial (see Theorem 2.11 [12, p. 252]). This only

applies because S has genus 0, hence qx> px. On the other hand, since <I> is

a smooth homomorphism of Y(S) onto G, G must contain elements of order

px and so qx < px which implies qx = px and proves (i). Next, since qx = px

and 4> : Y(S ) -* G is smooth and G is nilpotent, by Theorem 8.1 of

[7, p. 309] S must be nondegenerate. It follows from this that if a Fuchsian

group is admissible for supersolubility, then, for the smallest prime px dividing

the order of G, the px -local signature S    of S must be nondegenerate.

Theorem 3.3. Let Y be a finitely generated cocompact Fuchsian group with sig-

nature (y;mx, ... ,mr). Suppose Y(S) covers a finite supersoluble group G.

Then the negative ofEuler characteristic of Y satisfies the inequality Y > 1/9,

and equality occurs only when Y is the (2,3,18) triangle group with the ex-

ception of one Fuchsian group of signature (0 ; 2,4,6) with a negative Euler

characteristic of Y = 1/12, which can only cover one supersoluble group of order

24.

Proof. By the first three cases in the proof of Siegel's theorem [9], if y ^ 0 then

Y > 1/2 and if y = 0 and r > 4, then Y > 1/6 . Therefore the only case to be

considered here is where y = 0 and r = 3, that is among the triangle groups.

So Y = -x(S) = 1 - 1/w, - l/m2 - l/m3 where 2 < mx < m2 < m3 < oc.

We prove the theorem by considering a few cases, but the fact that Y > 0 rules

out the case of m{ = m2 = m¿ = 2 as well as the case of mx = m2 = 2 and

mi>3.

Case ( 1 ). Suppose all m¡ > 3 for i = 1,2,3. Then

(i)  If mx = m2 = mi = 3 , then Y = 0 and Y is not a Fuchsian group.

(ii) If mi > 4 for all i ±= 1,2,3 then Y > 1/4.

(iii) If m, = 3, m2 > 4, mi>4, then Y > 1/6.

(iv) If m, = m2 - 3, m3 > 4, then Y = 1/3 - \/m and Y < 1/9 only if

m3 = 4 and 7 = 1/12. But Y = Y(0 ; 3,3,4) by Theorem 3.2 is not admissible

for supersolubility because the smallest prime dividing its periods is 2 and its

2-local signature (0;4) is degenerate.

Case (2).  mx - 2, m2 > 3 , m3 > 3 and Y = 1/2- l/w2 - l/m3.

(i) If m2 > 5, m3 > 5 then Y > 1/10.
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(ii) If m2 = 4, m3 > 5 then Y < 1/9 only when m3 < 7. Hence ra3 = 5,

6 and 7 are the only possible numbers for the last period. Therefore we have:

(a) Y(S) = (0;2,4,5) which, by Theorem 3.1, is not supersoluble-admis-

sible because its derived group r' has the signature (0 ; 2,5,5) which is not

nilpotent-admissible or, by Theorem 3.2, simply because, for the smallest prime,

2, its 2-localization (0 ; 2,4) is degenerate.

(b) Y(S) = (0;2,4,7), by Theorem 3.1, is not supersoluble-admissible,

for its derived group Y" has signature (0 ; 2,7,7), which is not nilpotent-

admissible, or, by Theorem 3.2, simply because its 2-localization (0 ; 2,4) is

degenerate.

(c) Y(S) = (0;2,4,6) and Y = 1/12. This is indeed an exceptional

case because its derived group Y* has the signature (0;2,2,3,3), which is

nilpotent-admissible. Therefore Theorem 3.1 does not apply for this subcase.

In addition, the smallest prime dividing its periods is 2, and its 2-local signature

(0 ; 2,2,4) is nondegenerate. Therefore Theorem 3.2 does not apply for this

subcase either. This means that there is a possibility for a Fuchsian group

with the signature (0 ; 2,4,6) to have some supersoluble factors. In the next

section we shall see that there is only one candidate for a finite supersoluble

group covered by (0 ; 2,4,6) which has order 24. Actually it is the semidirect

product of the dihedral group of order 8 and the cyclic group of order 3. The

structure of this group will be given there.

Case (3). mx — 2 and m2 = 3 and Y = {1/6 - \/n , n > 7} . In this final case

Y < 1/9 only when n < 18, that is « = 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

& 18and £ = (0,2,3,*).

(i) If (2,n) = (3,«) = 1 , then r7 = T and Y is perfect and cannot be

residually soluble. This rules out all primes 7, 11, 13 & 17, see [8].

(ii) If n = 2r and (3,r) = 1, then Y has signature (2,3,2r), and its

derived group Y" has signature (0 ; 3,3, r), which is not nilpotent-admissible

because, for any prime p\r which is naturally different from 3, the p-local

signature is degenerate and, by Theorem 3.1, not supersoluble-admissible. This

rules out the integers 8, 10, 14 & 16.

(iii) Similarly if n = 3r and (2,r) = 1 then Y has signature (0;2,3,3r),

where 2 is not a divisor of r, and its derived group T7 has signature (0 ; 2,2,

2, r), which is not nilpotent-admissible because if p ^ 2 is any prime divid-

ing r then the p-local signature of Y* is degenerate, thus, by Theorem 3.1,

not supersoluble-admissible. This rules out the integers 9 & 15. Thus the only

candidates for n  are n — 12 and n — 18, i.e., when n = 6r,  r = 2 or

3. In this final subcase the derived group Y1 has signature ( 1 ; r), which has

index 6 in (0 ; 2, 3, 6r) and is nilpotent-admissible. But, for r — 2 , by Theo-

rem 3.2, the (2,3,12) group is not admissible for supersolubility because the

smallest prime dividing its periods is 2 and its 2-local signature (0 ; 2,4) is de-

generate. Thus, with the exception of one small case when Y has the signature

(0 ; 2,4,6), which can cover only one finite supersoluble group of order 24,
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a bound for a supersoluble-admissible signature occurs when S has the exact

form of (0;2,3,18).

Theorem 3.4. Let Cl be a compact Riemann surface of genus g > 2, and let G

be a finite supersoluble group acting on Cl. Then

(i) If g = 2,  \G\ < 24, with equality only if G ~ 7)4 ® Z3, with covering

the group (2,4,6).

(ii) If g > 3, G /zas orafeT |G| < lS(g - 1), and equality occurs if and only

if Q = 77 /r, w/zeve T ¿s a proper normal subgroup of finite index in

the (2,3,18) triangle group.

Proof. Let Cl be the universal covering space of Cl. Then by a standard ar-

gument see [12, p. 245], there is a group G which covers G. This implies

there is a smooth homomorphism <!>: G —> G such that its kernel nx(Cl) is the

fundamental group of the surface Cl and is the group with the signature (0 ; g).

Of course, here, Cl is the complex upper half-plane 77 and G is a Fuchsian

group Y(S). Then Q ~ 77 /nx(Cl). Moreover, G being the automorphism

group of Cl, is isomorphic to Y(S)/nx(Cl). Thus, using the Riemann-Hurwitz

identity, we have

By Theorem 3.3, if Y has signature (0;2,4,6), then Y = 1/12 and \G\ =

24(g - 1). From this it follows that \G\ = 24 only when g = 2; otherwise

7 > 1/9, and equality occurs if and only if Y is the (2,3,18) triangle group.

Thus we have

|G|~^Gsr-_i79_ = 18(^"1)-

In the next section we will investigate the structure of all finite supersoluble

(2,3,18) as well as the unique (2,4,6) triangle groups. We will also answer

the question: "Which values of the genus g are possible for a supersoluble

automorphism groups of maximal order?"

4. The chief series

of the supersoluble automorphism groups

In this final section we are due to answer the question: "Which values of g

are possible such that a surface of genus g can cover at least one supersoluble

automorphism group of maximal order ?" Indeed g is a possible value if and

only if (g- I) = 3" for all n = 0,2,3, ... . Define T0 = r(0;2,4,6) and
T, = T(0 ; 2,3,18), the notations we shall use from now on.

In view of Theorem 3.3 of the last section, which shows that T0 and Yx

are the only candidates for a Fuchsian group with a supersoluble-admissible

signature and with a Euler characteristic of minimum absolute value, it is natural

for us to examine their supersoluble smooth quotient groups. We will also

compute the chief series for these groups.
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Theorem 4.1.  T0 = T(0;2,4,6)  has a unique supersoluble smooth quotient

group G.    G ~ D4 ® Z3   is the semidirect product of the dihedral group of

order 8 and the cyclic group of order 3 admitting a chief series with factors C2,

C2, C2 and C3.

Proof. Let G be any finite supersoluble automorphism group covered by T0 =

(p,q\P = Q = (pq) = 1) • Let O: T0 —» G be a smooth homomorphism of

ro onto G. Then G is generated by two elements x and y satisfying the

relators
6 4       ,       .2        .

x = y = (xy) = l.

Thus 4 and 6 divide the order of G. Let 2 < 3 < p3 <      < pk be the prime

factors of the order of G. Since G is supersoluble for the pt.-Sylow subgroups

of G, we must have

G„Gn      ■ GG3 = NG, be normal in G ,
Pk    Pk-\ Pi    3 3 '

where N = G ■■■G and G/NG3 ~ G2. Consider the homomorphism

h : Y0 —► G2, where h = n o O and /? : G —► G/NG3 ~ G2 is the natural

homomorphism. By Theorem 3.2, G2 is a smooth factor group of T0, and

the kernel (h) = NG3 has an order relatively prime to 2. The 2-localization

of ro has the signature S2 = (0;2,2,4), which is nondegenerate. But it has

a positive Euler characteristic of 1/4; therefore, Y(S2) is finite. Actually it

is the dihedral group 7>4 of order 8. Hence, by Theorem (8.1) [7, p. 309],

r(52) ~ G2 ~ 7>4. Abelianizing T0 and letting 6: YQ —> ro/[ro,ro] be the

natural map, we can find the signature of 1^ = [ro, T0]. Since the relators

6S(p) = 4ô(q) = 2ô(p + q) = 0

yield the relators 26(p) - 26(q) = 0, YQ/Y'0 ~ Z2 © Z2. Thus, by Singer-

man's theorem [10], Yl() has the signature (0;2,2,3,3), which is nilpotent-

admissible. By Theorem 2.7, G', the derived group of G, is nilpotent and,

by the above argument, a factor group of T(0 ; 2,2,3,3). But the only finite

nilpotent factor group of (0 ; 2,2,3, 3) is Z6, as one can see easily by localizing

this signature. This means that there is only one group which is a candidate for

a finite supersoluble group covered by (0 ; 2,4,6), and it must have order 24.

This final analogy also proves that NG3, the kernel of h , is a cyclic subgroup

of order 3, i.e., jVG3 ~ Z3 which is also normal in G. It is now clear that G

must be the semidirect product of D4 and Z3, and it is unique. To check its

supersolubility we actually construct this (2,4,6) automorphism group in the

following subsection.

Construction of the unique (2,4,6) supersoluble automorphism group and its

chief series. Let T>4 = {a,b\a2 = b4 = (ab)2 = 1) be the dihedral group of

order 8. Let Z3 = (z\z = 1) be the cyclic group of order 3 and the action

be given by the relations bzb~ — z~ , az = za. Then, letting x = az and

y = b be the generators for G = T(0 ; 2,4,6), we have the following relations:

2        ,       ,2 2 -1
x  = (az)  = z  = z
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_2 _i 1
and so z = x    , which implies a = xz     = x   and b = y .

2 _i 2
Now xy = azb, that is, (xy)   = azbazb = abz    zab = (ab)  = 1.

Thus G = (x,y|x — y = (xy) = 1), this is, G is a (2,4,6)-group.

Moreover Z3 is normal in G but 7>4 is not normal. Therefore G ~ D4 g> Z3.

Finally a chief series for this unique exceptional supersoluble group is given

by the following chains of subgroups:

r(0;2,4,6)>r(0;3,4,4)>r(0;2,2,3,3)>r(0;3,3,3,3)>r(2;)

or, equivalently,

7)4 <g> Z3 > Z3 <g> Z4 > Z6 > Z3 > {1} ,

where Z3 ® Z4 is the semidirect product of the cyclic groups Z3 and Z4 and

has the presentation

Z3®Z4 = (a  =\,a  =b  = (ab) ) = (x = ab,y = b\x  =y  = (xy)  =1).

The series has the chief factors C2, C2, C2, and C3, all cyclic and of prime

orders. Therefore, if a surface of genus g admits a supersoluble automorphism

group G of order 24(g - 1), then g must be equal to 2 and there exists only

one supersoluble automorphism group covered by T0 = ro(0;2,4,6), which

is this given semidirect product. In the next theorem we will investigate the

structure of all other supersoluble automorphisms of maximal order, but first

we need to give the following technical lemma.

Lemma 4.2. For any two distinct primes p and q, a group G of order pq" , for

which p\(q - 1) is always supersoluble.

Proof. Using the Sylow theory, a Sylow ^-subgroup G of G must be normal

in G. Also, since G/G ~ Z is the unique cyclic group of order p that

is abelian and of exponent dividing q - 1, G is strictly p-closed. Thus, by

Theorem 2.9, G is supersoluble.

Theorem 4.3. Let Yx = Y(0 ; 2,3,18). Let Cl be any surface of genus g admit-

ting a supersoluble automorphism group G of order 18(g-l). Then G can be

covered by Yx if and only if (g - 1) = 3" for all n > 2.

Proof. The argument in Theorem 3.4 shows that if | Aut(i!)| = \8(g - 1), then

Q ~ 77 /r, where Y is a proper normal subgroup of finite index in Yx . Here Y

is defined to be the group of covering transformations of the universal covering

map 6: 77  —► Q. We prove the theorem in two steps.

(a) Suppose G of order \8(g - 1) is covered by Yx . Then there exists

a smooth homomorphism, <P: T(0;2,3,18) —> G, onto G. Thus G must be

generated by two elements P and Q satisfying the relations

P2 = ß3 = (/»ß)18=T.

If G is supersoluble then its order \G\ must be divisible by the first two

primes, namely 2 and 3. As usual let 2 < 3 < p3 ■ ■ ■ < pk be in this ordering
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all the prime factors of \G\. Suppose G2, G3, G , ... ,G are the corre-

sponding Sylow subgroups. Then, by the Sylow tower property of G, we have

G>GGn     ■■ G3 = NG3, where as before A^ = G     -G    and G/NG-, m G..
Pk    Pk-1 3 3 Pk Pi '32

The 2-localization of the signature 5 = (0;2,3,18) is actually S2 = (0;2,2),

which is nondegenerate but has the positive Euler characteristic ^(>S2) = 1 .

Therefore, by Corollary 6.7 in [7, p. 307], G2 ~ Y(S2) ~ Z2. Let, as before,

n : G —► G/NG3 a¡ G2 be the natural homomorphism. Consider the homomor-

phism /: Y{ —» G2 : then /=no$ and ker(/) ~ /VG3 has an order relatively

prime to 2. Next, by Singerman's theorem [10], ker(/) ~ r(0;3,3,9), more-

over \NG3\ = 9(g - 1). Thus, by Theorem 1.1.2 [13, p. 239], NG3, being
a factor group of Y(0 ; 3,3,9), must be a nilpotent 3-group. Thus, by §1.3 of

[13, p. 240], if a surface of genus g admits a nilpotent automorphism group

of order 9(g-l) (the order of maximal automorphism 3-groups), then (g-l)

must be a power of 3. This means (g - 1) = 3", and so \G\ = 2-3"+2 for all

n >2.
(b) Conversely, if (g - 1) = 3" , then the order of G will be given by \G\ =

18(3") = 2-3"+ , and since 2|(3 - 1) by Lemma 4.2, G must be supersoluble.

In a separate paper entitled "Classification of p-groups of automorphisms

of Riemann surfaces and their lower central series" by this author [13] it is

proved that the maximal 3-groups of automorphisms of Riemann surfaces of

genus g > 2 have order 9(g - 1) and that this upper bound occurs when the

Fuchsian group Y has the exact signature of (0 ; 3,3,9).

Thus Theorem 4.3 also proves that the maximal automorphism 3-groups are

normal subgroups of index 2 in the maximal supersoluble automorphism groups.

We also have the following theorem on the existence of a supersoluble automor-

phism group.

Theorem 4.4. For any integer n > 4, there exists a supersoluble automorphism

group G of order 2-3" acting on a compact Riemann surface Cl of genus g —

3"-2 + 1.

Proof. By Theorem 1.3.1 in [13, p. 241] for any integer n > 4, there exists

a nilpotent automorphism 3-group G3 of order 3" that can act on a compact

Riemann surface Q of genus g = 3"~ + 1. By the argument in the same

paper, G3 is a (3,3,9) group, that is a normal subgroup of index 2 in the

supersoluble (2,3,18) groups. Therefore G3 must admit an automorphism of

order 2 which permutes the two conjugacy classes of the periodic generators of

order 3 cyclically.

Thus there exists a (2,3,18) group of order 18(g - 1) = 2-3" which can

be obtained by attaching that element of order 2 which permutes these two

periodic generators in this manner.

Construction of a (2,3,18) supersoluble automorphism group and its chief se-

ries. Let T, = r(0;2,3,18) = (p,q\p2 = q3 = (pq)lS = 1).   Let  t: T, ->
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rj/IT^Tj] be the abelianizing homomorphism, where [r,,r,] = Y'x  is the

derived group of T, . Thus we have 2x(p) = 3r(q) = 18(t(/?) + x(q)) = 0.

But it is easy to see that these relators yield

r1/r'1^z2®z3^z6.

By Singerman's theorem [10], r', has signature (1;3) which is nilpotent-

admissible. Now since P. has index 6 in Yx , it is more convenient to take the

intermediate step via the subgroup ker(ö) in Yx of index 2, where 6: Yx —> Z2

is the homomorphism defined by 6(p) = 1 (mod 2), 8(q) = 0 (mod 2). Then

F, D ker(ö) D r, and ker(0)/rv1 a (r(fl)) has order 3.

A Schreier set of coset representatives for ker(ö) in T, is U — {\,p}.

Clearly q e ker(ö), but p g ker(ö). Therefore the generators and relations of

ker(0) are obtained by the following tables, where X and R represent the set

of generators and relators respectively.

[Generators]

5u\x

1

p

(4.1)

q

Q

PQP

i\r

[Relations]

PQ3P

(4.2)

iPQ)

(p«r
p(pq)isp

Letting a = pqp , ß = q , and e = p   and rewriting the relators in terms of

these new generators, we have:

P=\

«3 = 1

,18

e= 1

/?3 = 1

9(pq)l° = 1 ~ (aß)

1

Thus

PUP

p(pq)   p = 1

3
y

(ßaY

a   = 1

9

T2 = (a, Ala3 = /?3 = (aß)9 = 1) = ker(ô),

which is ultimately a (3,3,9) group of order 9(g — 1). Referring to the above

mentioned paper [ 13], it is proved that the genus g has the minimum value of

10. Burnside [1] shows there is a (3,3,9) group of order 34 that is a nilpotent

3-group with the presentation

77, = (x,.y|x   =y  = (xy)  = (xy
■K3

1, {xy)  = (yx) ),

Let Z'2 z\z   = 1), and let the action on the group be given by

zyz = x,    and    zxz-y.
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Let the new generators of the super group be given by

p = z   and   q — x.

Then we have the relations

2 3 2
p   = q   = 1,    and    (pq)   = zxzx = yx,

thus (pqf = (yx)9 = (xy)9 = I .

But the extra relations must also be written in terms of these new generators,

so we have x - q , y = zxz = pqp and obtain the extra relations

(xy-1)   = 1 ~(qpq~Xpf= 1    or   (pqpq~Xf = 1

and the relation

(xy)3 = (yxf ~ (pqf = (qpf.
Therefore a supersoluble smooth factor group for the genus g — 10 has the

presentation

G, = (p,q\p2 = q3 = (pq)18 = [p,qf = 1 ,(pqf = (qpf),

which is clearly supersoluble by Lemma 4.2 since it has an order of 162 = 2-3 .

A chief series for this maximal automorphism supersoluble group which oc-

curs when g = 10 is given by the following chain of normal subgroups:

G1>771>772>773>774>{1},

where G, and 771 are as above and 772, 773, 774 are the other normal sub-

groups in this chief series, all normal in Gx . Equivalently, if we present these

subgroups according to their signature representations, we will obtain

r(0;2,3,18)>r(0;3,3,9)>r(0;9,9,9)

>T(l ;3,3,3)>T(l ;3,3,3,3,3,3,3,3,3) >T(10; ),

which has the cyclic factor groups of prime orders C2, C3, C3, C3, and C3.
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