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Dedicated to M. Collar on his 75th birthday

Abstract. We show that the Dirichlet to Neumann map for —Au+vu = 0 , de-

termines the potential v(x), for v(x) satisfying the condition of C. Fefferman

and D. Phong.

We shall consider here a bounded domain f2 c R", n > 3 with smooth

boundary. Consider then the equation in Q given by -Au + vu = 0. Define

the Dirichlet to Neumann map A^ on 9Q given by

KXf) = 7T- > TT- is the outward normal derivative
' Of    ov

and u solves the Dirichlet problem -Aw + uv = 0 in Í! and u\dQ = /.

We recall, ([F], [CW]) the definition of the C. Fefferman, D. Phong class. We

say v G Fp if for all cubes Q c R" ,

i/p

M*-T«r? [&/."*]   <0°

We remark that L"/2(R") c Fp for p < n/2, and likewise Ln'2'°° c Fp,

p < n/2. The containments are strict as v = f(x/\x\)\x\~ , / G LP(S"~ ),

p > (n - l)/2 is not in Ln/2'°° but v g Fp, p > (n - l)/2. The main result

proved here is as follows.

Theorem. Suppose \\v.\\F   < e(n),  p > (n - l)/2,   / =  1,2.   Assume thati tp
A„ = A„ , then v. = v, in Q.

Remark. In the theorem above it is enough to assume that vi are supported in

n.
The one-dimensional result is due to [B], [L]. If v¡ G L°° the result is due to

[NSU] and [HN]. The two-dimensional result is in [SU,] and the C°° case in
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[SU2]. Applications to conductivity measurements are in [C], [KV], [SU,] and

[SU2]. [KV] also treats the case where u(, are analytic.

The smallness assumption on the F norm is not needed if vi G LP(Q),

p > n/2. We wish to thank D. Jerison and C. Kenig for pointing this out to

us and also include their proof of this observation after the end of the proof in

the main theorem above.

We recall the following inequality from [CS].

Theorem 1. Let f G C0°°(R")( v > 0 and v e Fp, p > (n - l)/2. For

zGCn,yGC, define Q(D) = A + z ■ V + y. Then

f  \f\2v<c [  \Q(D)f\2v~'
JR" JR"

where c is independent of f, z, y.

We use the theorem stated above to prove the lemma that follows.

Lemma 1. Let v¡ G Fp n L , p > (n - l)/2, and Wv^p < e, i - 1,2. Let

zgC" with z-z = 0. Let V(x) = \vx\ + \v2\ + 3(l + |x|2)-" , 3 > 0 and small.

Let L2V = {/: /R„ \f\2V < oo}. Then,

(a) there is a unique solution to -A + v¡ of the form,

Z'X 2
Uj(x) = e    mz ¡(x) ,i= 1,2 with m2 . in the space Lv.

(b) /R„ |m, (.| V < c, uniformly in z, i = 1,2.

(c) mz ((x) —► 1, / = 1,2 weakly in Lv as \zk\ —» oo, for some sequence

zk-

Proof. Substituting u - ezxmz ((x) into -Au + v¡u = 0, we note that mz ;(x)

satisfies the equation

-Amz j + (z • V)mz . + v¡mz ¡ — 0.

Therefore, mz ¡ satisfies the integral equation,

(1) mzi^\ + Gz(vimzJ),       i = l,2

where Gz denotes the Green function for -A + z ■ V . Define TJ(x) = 1 +

Gz(v¡f)(x). It will be enough for us to show T. has a fixed point on the Banach

space Lv , thus showing (a). In fact we show T¡ is a contraction on Lv and

thus the uniqueness assertion (a) of Lemma 1 also follows. Since v, ,v2 G L ,

VgL1 . Since vx,v2, 3(1 + \x\2)~n G Fp , p > (n - l)/2, we have \\V\\Fp <e,

for p > (n - l)/2. Moreover V > 0. Thus, Theorem 1 is applicable with

v = V . Moreover |v.| < V, / = 1,2 .
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Thus,

/   \TJ\2V<  f   V+ f   |GZ(V)|V
JR" JR" JR"

<c + e [  \vff\2V~l <c + e [  |/|VV"'
JR" JR"

<  [  \f\2V<oo.
JR"

Similarly,

/  \Tt{f-gfv<  f  \Gz(Vi(f-g)\2V<e [  \f-g\2\v.\2V-1
JR" JR" JR"

<e[  \f-g\2V.
JR"

Thus Tt is a contraction and the existence and uniqueness of mz ( is assured.

We now show (b). By (1),

/  \mzi\2V<c[  V + cí  \Gz(V¡mz ,)|V
Jr" Jr» Jr"

<cx i  V + ec2 [ \m, ¡\2V
JR" JR"

where c, , c2 do not depend on z.   Thus for small e, and since from (a),

Ir" \m- J ^ < °°, we see,

/   |am   -I V<c, uniformly in z.
JR"

We now prove (c). Note the multiplier for Gz given by (|£| +/z•£)     —► 0 as

|z| —» oo . Next we note by (b),

/  \G,(vimzi)\2V<e [  \mzi\2V<c.
Jr" Jr"

Thus there is a sequence zk , |zj —> oo, so that Gz (v¡m    ¡) -* 0 weakly in

Lv.   Since (1) holds, it follows that mz  i —»  1  as \zk\ —> oo in Ly.  The

lemma is now proved.

Lemma 2. Extend vx   and v2  to be zero outside il.   Let ut  be the unique

solutions of Lemma 1 to -A + v ,  i = 1,2. If A„  = A„ , then u, = u.. in

R"\n.

Proof Recall, [F], [CW], that if p^ < e , p > 1, then for f& C0°°(R"),

(2) /   |/r>,l<*/   |V/|2.
JR" JR"

Thus the bilinear form,

/ Vu • Vtp + / u<pv2
Jn Jo.
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is coercive and continuous for u, ¡p G HQ (Q). As,

\mzX\2\v2\<       \mzX\2\v2\<       |/n   ,|V<oo,
JQ JR" ' JR"

and ux = ezxmv , , we get fQ \ux\ \v2\ < oo. Thus, the Dirichlet problem,

-Au + uv2 =0        in Q

u = w,       on dQ,

has a unique solution u, such that fQ \u\ \v2\ < oo.

Since u - ux has compact support, by (2), as V g F' , p > 1,

/  \u-ux\2V< f   |V(w- ux)\2 < oo.
Jn Jn

On £2, \ux\ < c\m^ ,|, thus, fn \u\ V < oo by Lemma 1.

Define,
( u     in Q

I w,    inR"\Q.

Since AV2(ux) -du/dv — Av (ux) = dux/dv , <f> is a solution to R" to -A+v2 .

Writing <P = ez'x[e~z'x®\ = ez'xMz(x), we see that M„(x) = m, ,(x)  in

R" \ Q, and since /n|w|2F < oo, it follows that /R„ \Mz\2V < oo. By the

uniqueness assertion of Lemma 1, Mz = mT 2, and thus O = u1, in particular

w, =«2 in R"\0.

We are now in a position to prove our main theorem.

Proof. Fix I gZ" . Choose k , e G Rn, so that \k\ = \l-e\, k-e = k-l = e-l =

0. This choice forces \k\ = \l+e\. Let z = {-(-k + i(l-e)), z = ^(rc-H'(/-l-<?)).

Note z • z = z • z = 0. We shall use Green's theorem in the form,

f(wAf-fAw)= [
Jn Jon

df     rdw
w*-f-^~

ou        ou
do

with the choice w = e' x , f = u{ = ezxmz ¡. Let D be a collar neighborhood

of dQ with thickness p . Let dDp nfi = dDp , and dDp n (R" \Û) = ¡97)^ 2.

Note

(3) / e*'xv,u, = - / e:'xAui = /   ez'x
Jo. Jn Jon

We now show that,

(z.,)W,-^ do

(4)
/■Jon

't-      ̂  a"i
(*.„)„,-^ 7«r = /"  e* * Z ■ f  M-, -

<9W-
2        OU do.

Temporarily assume (4). Combining (3) and (4) we see

/ e~ xv.ux = / e" xv2u2.
Jn Jn
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Since ui = ezxmz ¡, we get

mz 2v2.
f     il-x f     il:
/   e       mz,iVi =   /   e
Jn Jn

Letting |z| —► oo and using (c) of Lemma 1, we conclude

f      U'X f      il'X
e    vx= / e    v2.

Jn Jn

This shows vx = v2. We now show (4). We apply Green's theorem to the collar

neighborhood D     Since vx =v2 = 0 in R"\Q, ux and u2 are harmonic and

C°° in R" \ Q.. By Lemma 2, ux = u2 in R" \ Q.. Thus

/Joi
(z ■ v)u.

IODp,

So by Green's theorem

dux

~dv
io= [      ez'x

JoD„ 2

t~       \ dU2
(z-v)u2--^

j

,„     w .     dux      du2

JD„

ez'x(vxux

do.

v2u2)

But fD \u¡\ V < oo. Thus as p —> 0, the integral on the right side converges

to zero. Thus the integral on the left side converges to zero. But in the limit

the integral on the left side is exactly the difference of the two integrals in (4).

This establishes (4).

We now give the argument by D. Jerison and C. Kenig. In essence we show

that a form of Lemma 1 holds with no smallness assumption if v¡ G Lr(Q.),

r > n/2.

We begin with,

Lemma 3. Let 2/(n + 1) < (q - 2)/q < 2/n . Let \z\

for l/p+ \/q=\,

1 , and z ■ z = 0. Then

\GJ\\L«(R")
< C

U(R")

where G7f(Ç) = (\c¡\  + z ■£,)  ' f(Ç) and c is independent of f and z.

Proof. We assume w.l.o.g. that

GzM) = (\i\2-2^x+2ii2rif(i).

By changing variables in £, , £, —> (<!;, - 1) we can assume that G_f(£,) =

(|£|2+l+2/£2r'/(£). Since l/p+l/q = l, (q - 2)/q = \/p - \/q , and thus

under the hypothesis of the lemma, 2/(«+l)< \/p-\/q <2/n . We may thus

apply Theorem 2.4 in [KRS] to conclude Lemma 3.

From Lemma 3 we deduce the next lemma. The notation we adopt is iden-

tical to Lemma 1.

Lemma 4. Let w, ((x) = m. .(x) - 1 . Let vj G Lr(Q), r > n/2 , and z • z - 0.

Let 2/(n + 1) < (q - 2)/q = l/r < 2/n . Then, for \z\ large,

(a) there is a unique solution to -A + v¡ of the form u¡(x) = e~'x m. ¡(x),

with \\w. (||¿í(RB) < c uniformly in z .

(b) IKJIl.ir») -*0 as \z\ -^°°-
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Proof. From ( 1 ) we readily see that wz . satisfies

wzJ + Gz(viwzi)^Gz(vjXci).

Let Mv(f) = vtf, the multiplication by v( operator. The identity above can

be rewritten as,

(5) (I + GzMv¡)(wzi) = GzMv¡(Xa),

where 7 = identity operator. We now claim that for a = 2 - n/r > 0, and for

c independent of z,

(6) l|G^e|(/)||¿f{1.)<«|z|-a||/||W(H.).

Temporarily assume (6) and note that for large |z|, I + GzMv  is invertible on

L?(R"),and

l|G2Mt,/(^)||¿,(R„)<c|zra|Q|,/9!

c independent of z . Thus the uniqueness and existence of iu, . follows from

(5) and \\wz ,||L,(R„) < c|z|~" . So we are reduced to checking (6). Let 3 = \z\,

rsf(x) = f(3x). We note Gz = 3~2T&Gzà.x r,_,

S(R")

_2
and Txf(x) = f(3x). We note G  — 3    TSG *_, 7\_, by a change of variables,

and moreover W^fW^^^ = 3 "/s\\f\\L,{tP). Thus,

By Lemma 3, the right side above is at most

c3-2-n/"\\T^MVi(f)\\Lf < cS-^'^WvJW^ ,        \/p + l/g = 1.

Now r_1 = 1 - 2i7~' = p~ - q~ , because p~ + q~ = 1 . So the right

side above is at most c3~ + H^/H^ ■ Now applying Holder's inequality with

exponents r/p and r/(r - p) — q/p ,

<n:a\\fhw

Using Lemma 4 we may conclude the fact that Av determines v exactly as

Thus we have (6), and Lemma 4 follows.

Usir

before.
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