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Abstract. Let Ä bea Cohen-Macaulay local ring with maximal ideal m

and suppose that dim R > 2 . Then R is regular if (and only if) for any

Buchsbaum Ä-module M and for any integer i, i ^ dim« M, the canoni-

cal map Ext'R(R/m, M) —► H'm{M):  = limExtJj(/?/w", M) is surjective. The

n

hypothesis that R is Cohen-Macaulay is not superfluous. Two examples are

given.

1. Introduction

The purpose of this paper is to prove the following

Theorem 1.1. Let R be a Cohen-Macaulay local ring with maximal ideal m

and suppose that dimR > 2. Then the following two conditions are equivalent.

( 1 ) 7? is a regular local ring.

(2) For any Buchsbaum R-module M and for any integer i / dimÄ M, the

canonical map

Ex\'R(R/m, M) f-k H'JM) : = Hm Ext'R(R/m" , M)
n

is surjective.

In the above theorem our contribution is the implication (2) => (1) and the

reverse one is due to J. Stückrad [4, Satz 2].

As is well known, Stückrad and Vogel discovered in 1978 a cohomological

criterion, so-called now the surjectivity criterion for Buchsbaum modules:

Surjectivity criterion ([4, Satz 2] and [5, p. 732, Theorem 1]). Let M be a

finitely generated module over a Noetherian local ring (R, m). If the canonical
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map Ext'R(R/m,M) -4 H'm(M) is surjective for any i / dim^M, M is a

Buchsbaum Ä-module. When R is regular, the converse is also true.

This criterion is general enough and really powerful. In fact, passing to the

m-adic completion R of R and appealing to the structure theorem of Cohen,

one may assume the base ring 7? to be regular; hence a given R-module M

is Buchsbaum if and only if the maps <p'M are surjective for all i / dimÄ M.

Comparing with this clear assertion one might feel our Theorem (1.1) somewhat

pedantic. However there has been known only one example of Buchsbaum

modules M which fail to have the surjectivity of the maps <p'M , provided that

R is not regular (cf. [4]). On the contrary Theorem (1.1) and its proof claim

that any nonregular Cohen-Macaulay local ring R of d — dim R > 2 possesses

at least one Buchsbaum .R-module M of dimR M = d, for which the canonical

map E\iR(R/m,M)'Pji Hxm(M) is not surjective.

The proof of Theorem (1.1) shall be given in the next section. Unfortunately

the hypothesis in (1.1) that R is Cohen-Macaulay cannot be removed. There

exists a nonregular Buchsbaum local ring R of dim R = 2 that satisfies the

condition (2) of (1.1) (cf. Proposition (3.2)). We will explore two examples in

§3.
Throughout this paper let R stand for a Noetherian local ring with maximal

ideal m and let 77^(-) denote the z'th local cohomology functor relative to m.

2. Proof of Theorem 1.1

In this section we assume that R is a Cohen-Macaulay ring of d —

dim R > 2. We choose a minimal system xx, x2, ... , xn of generators

for the maximal ideal m so that the sequence x¡ , x¡ , ... , x¡ forms a system

of parameters of R for any 1 < z, < i2 < ■ ■■ < id < n . Let

0 — L —» R"   t*'*2"-*"1, R —+ R/m — 0

denote the initial part of a minimal free resolution of R/m and let {e¡}l<i<n

be the standard basis of R" . Then L 3 f.: = x,e: - x¡e¡ (1 < i < j < n).

We denote by K the /?-submodule of L generated by the Koszul relations

ifij)\<i<J<n- Let

N = mL + K       and       M = Rn/N.

Then we have

Proposition 2.1.  M is a Buchsbaum R-module of dimÄ   M — d and

H'm(M) = L/N (7 = 0),

= R/m (z=l),

= (0) (zV 0,l,u?).
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First let us give a proof of (1.1) modulus (2.1).   It suffices to prove the

implication (2)=>(1). Because Ext'R(R/m,M) -4 H'm(M) is surjective for any

i' ̂  d, we get by [5, p. 734, Lemma 6] that the homomorphism

>. : Exti(Jl/m, L/N) -» Ext* (Ä/m, A/)

induced from the imbedding Hm(M) = L/N -U M is injective. Let

■■■^F3^F2^Fx=Rn   a'=tX|X2'"x"]. 70 = 7? - R/m -» 0

denote a minimal free resolution of Ä/m and recall that the map

/, : Ext2R(R/m, L/N) — ExtR(R/m, M)

is induced from the following homomorphism

-► Hom^F, , L/N) % HomR(F2 , L/N) ^ HomÄ(F3 , L/N) ->...

• ■•—>  HomR(F¡,M)   —► HomR(F2, A/) —►    Hom«(F3 , A/) —> ...

of complexes. Consider the commutative diagram

o:

X

L/N —i->- M = FX/N,

where e, t are the canonical epimorphisms and d'2 denotes the epimorphism

induced from d2. Then the cohomology class x o d'2 of x o d2 is contained in

the kernel of Ext2R(R/m,L/N) ^ Ext2R(R/m,M). Because HomR(F2,L/N) =

ExtR(R/m,L/N) and the homomorphism jm is injective, we see x o d2 —

x o d'2 = 0 whence L = N . As N = mL + K by definition, we get L = K , that

is the module 7 of the relations of the minimal system xx ,x2, ... ,xn of gen-

erators for m is generated by the Koszul relations {x¡e¡ - x¡ei}x<i<¡<n . Thus

R has to be regular (by an easy Koszul argument: 77, (x,, x2, ... , xn ; R) — (0)

if and only if xx,x2, ... ,xn is an ^-regular sequence).

Proof of Proposition 2.1. By the short exact sequence 0 —► L/N —> M —> m —>

0, we get the second assertion. Hence M is a generalized Cohen-Macaulay

7<-module, that is the length lR(H'm(M)) of H'm(M) is finite for any z ^

dimÄ M, and IR(M) = /Ä(L/^) + (rf - 1) (cf., e.g., [6,7]). To prove that

M is Buchsbaum we need the following lemma.
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Lemma 2.2 [7, Proposition 3.2]. Let R be a Noetherian local ring and let M be

a generalized Cohen-Macaulay R-module. Then M is Buchsbaum if and only

if the maximal ideal m of R contains a system xx ,x2, ... ,xn of generators

that satisfies the following condition: For any 1 < ix < i2 < ■ ■ ■ < is < n

(s = dimÄ M), the elements x¡ , x¡ , ... , x¡ form a system of parameters for

M and one has the equality

lR(M/qM)-eq(M) = IR(M)

where q = (xit,xh, ... ,x¡)R.

Let \ < ix < i2< ■■■ < id < n be integers and put q = (xi ,x¡ , ... ,x¡ )R.

Then by virtue of (2.2), because our module M is generalized Cohen-Macaulay

and dim^ M — d, we have only to see the equality

lR(M/qM) - eq(M) = lR(L/N) + (d - 1).

Recall that the maximal ideal m is a Buchsbaum Ä-module of IR(m) = d - 1

(cf. [1, Proposition (2.4)]). Then as e^(M) = e^(m), we have

lR(M/qM) - eq(M) = lR(M/qM) - <?q(m)

= lR(M/qM)-[lR(m/qm)-(d-l)]

= [lR(M/qM)-lR(m/qm)] + (d-l).

Consequently, in order to prove that M is Buchsbaum, it is enough to check

the equality

lR(M/qM)=lR(L/N) + lR(m/qm),

that is the sequence

0 -♦ L/N ->• M/qM -* m/qm -^ 0

induced from the short exact sequence 0 -* L/N -^M-»nO remains

exact, or equivalently

7 n q • R" C N

which immediately follows from the next

Claim (2.3).  7 n q • R" c K.

Proof of Claim 2.3. We may assume q = (xx,x2, ... ,xd)R. As

q.RncJ2^+K,
i=i

it suffices to show that
d

Ln^Re, c K.
i=i

Let
d

v = Y.aieieL
¿=i
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and we have J2¡=\ a,x, = 0. Because xx,x2, ... ,xd is an 7<-regular sequence,

we see
d

Eû^= E b,Miej-xje¿
i=l \<i<j<d

for some b¡¡ e R which means v e K as required. This completes the proof

of Theorem (1.1) as well as (2.3).

3. Counterexamples

Let M be a Buchsbaum Ä-module of dim^ M = s and depth^ M = t.

Then it is easy to check that the canonical map Exi'R(R/m, M) 4 H'm(M) is an

isomorphism if t < s (cf. [5, p. 736, Corollary 1.1]). Accordingly, whenever

t < s and H'm(M) = (0) for all i ^ t, s, the Buchsbaum Ä-module M enjoys

the surjectivity property (2) stated in (1.1). This is the reason why in Theorem

(1.1) we have assumed that dim R > 2. By the same reason we see that in

case dim7< = 2, the ring R satisfies the condition (2) of (1.1) if and only if

any Buchsbaum 7?-module M of dim^ M = 2 enjoys the surjectivity property

(2) in (1.1).

Proposition 3.1. Let R be a two-dimensional local integral domain of e(R) = 1.

Then R satisfies the condition (2) o/(l.l).

Proof. By [4, Satz 2] we may assume that R is nonregular. Then R possesses

no Buchsbaum module M of dimÄM — 2. In fact, assume the contrary and

choose a Buchsbaum .R-module M of dimÄ M = 2. Then as R is an integral

domain, R is contained in the endomorphism algebra End^ M whence 7? is

a subalgebra of End^ M. Let 33 e Ass R. Then as *ß e Ass- M and as M

is a Buchsbaum Ä-module, we have either dim R/^ß = 2 or çp = mi? (cf. [5,

p. 730, Lemma 2]). Of course, since depth R > 0, we get $/ mR and so

dim R/^ß — 2 for any <p e Ass R. Hence R is unmixed, which implies by

[3, (40.6) Theorem] that R is a regular local ring because e(R) = 1 by our

assumption—this contradicts the choice of 7?. Thus R possesses no Buchs-

baum module M of dimÄ M = 2.

In his famous book [3, p. 203, Example 2] Nagata constructed a two-

dimensional nonregular local integral domain R of e(R) = 1. His example

asserts by (3.1) that the hypothesis in (1.1) that R is Cohen-Macaulay is not

superfluous.

Proposition 3.2. Let S be a three-dimensional regular local ring with maximal

ideal n. Let X e n \ n and let I be a proper ideal in S of htsI > 2. Then

the ring R = S/XI satisfies the condition (2) in (1.1).

Proof. Let ?ß = XR. Then R possesses exactly three isomorphism classes of

indecomposable Buchsbaum Ä-modules M of dimR M(= dim R) = 2 and the



646 SHIRO GOTO

^-modules

M0 = R/m¥,        Mx = m/«p,        and M2 = R/<$

are the representatives of them (cf. [2, Theorem (3.1)]). Since H'm(M.) = 0

if i ^ j, 2, the .R-modules M.(j = 0,1,2) enjoy the property (2) in (1.1).

Because any Buchsbaum 7?-module M of dimÄ M = 2 is isomorphic to a

direct sum of A/.'s together with a vector space over R/m, we see that M has

the required property (2) stated in (1.1). Thus R satisfies the condition (2) of

(1.1).

In the above proposition, if we choose 7 = n, R = S/Xn is a nonregular

Buchsbaum ring. This example shows that the hypothesis in (1.1) that R is

Cohen-Macaulay cannot be replaced by the weaker one that R is Buchsbaum.
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