ON THE SURJECTIVITY CRITERION FOR BUCHSBAUM MODULES

SHIRO GOTO

(Communicated by Louis J. Ratliff, Jr.)

Dedicated to Professor Hideyuki Matsumura on his 60th birthday

ABSTRACT. Let R be a Cohen-Macaulay local ring with maximal ideal m and suppose that $\dim R \geq 2$. Then R is regular if (and only if) for any Buchsbaum R-module M and for any integer i, $i \neq \dim_R M$, the canonical map $\operatorname{Ext}^i_R(R/m,M) \to H^i_m(M)$: $= \lim_{\longrightarrow} \operatorname{Ext}^i_R(R/m^n,M)$ is surjective. The

hypothesis that R is Cohen-Macaulay is not superfluous. Two examples are given.

1. Introduction

The purpose of this paper is to prove the following

Theorem 1.1. Let R be a Cohen–Macaulay local ring with maximal ideal m and suppose that $\dim R \geq 2$. Then the following two conditions are equivalent.

- (1) R is a regular local ring.
- (2) For any Buchsbaum R-module M and for any integer $i \neq \dim_R M$, the canonical map

$$\operatorname{Ext}^{i}_{R}(R/\mathfrak{m}, M) \stackrel{\varphi^{i}_{M}}{\longrightarrow} H^{i}_{\mathfrak{m}}(M) : = \underset{n}{\lim} \operatorname{Ext}^{i}_{R}(R/\mathfrak{m}^{n}, M)$$

is surjective.

In the above theorem our contribution is the implication $(2) \Rightarrow (1)$ and the reverse one is due to J. Stückrad [4, Satz 2].

As is well known, Stückrad and Vogel discovered in 1978 a cohomological criterion, so-called now the surjectivity criterion for Buchsbaum modules:

Surjectivity criterion ([4, Satz 2] and [5, p. 732, Theorem 1]). Let M be a finitely generated module over a Noetherian local ring (R, m). If the canonical

Received by the editors February 13, 1989 and, in revised form, May 19, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 13H05, 13H10; Secondary 13H15.

Partially supported by Grant-in-Aid for Co-operative Research.

642 SHIRO GOTO

map $\operatorname{Ext}_R^i(R/\mathfrak{m},M) \stackrel{\varphi_M^i}{\to} H_\mathfrak{m}^i(M)$ is surjective for any $i \neq \dim_R M$, M is a Buchsbaum R-module. When R is regular, the converse is also true.

This criterion is general enough and really powerful. In fact, passing to the m-adic completion \widehat{R} of R and appealing to the structure theorem of Cohen, one may assume the base ring R to be regular; hence a given R-module M is Buchsbaum if and only if the maps φ_M^i are surjective for all $i \neq \dim_R M$. Comparing with this clear assertion one might feel our Theorem (1.1) somewhat pedantic. However there has been known only one example of Buchsbaum modules M which fail to have the surjectivity of the maps φ_M^i , provided that R is not regular (cf. [4]). On the contrary Theorem (1.1) and its proof claim that any nonregular Cohen-Macaulay local ring R of $d = \dim_R R \geq 2$ possesses at least one Buchsbaum R-module M of $\dim_R M = d$, for which the canonical map $\operatorname{Ext}_R^1(R/m, M) \stackrel{\varphi_M^i}{\to} H_m^1(M)$ is not surjective.

The proof of Theorem (1.1) shall be given in the next section. Unfortunately the hypothesis in (1.1) that R is Cohen-Macaulay cannot be removed. There exists a nonregular Buchsbaum local ring R of dim R=2 that satisfies the condition (2) of (1.1) (cf. Proposition (3.2)). We will explore two examples in $\S 3$.

Throughout this paper let R stand for a Noetherian local ring with maximal ideal m and let $H_m^i(\cdot)$ denote the *i*th local cohomology functor relative to m.

2. Proof of Theorem 1.1

In this section we assume that R is a Cohen-Macaulay ring of $d=\dim R\geq 2$. We choose a minimal system x_1 , x_2 , ..., x_n of generators for the maximal ideal m so that the sequence x_{i_1} , x_{i_2} , ..., x_{i_d} forms a system of parameters of R for any $1\leq i_1< i_2<\cdots< i_d\leq n$. Let

$$0 \longrightarrow L \longrightarrow R^n \xrightarrow{[x_1 x_2 \cdots x_n]} R \longrightarrow R/\mathfrak{m} \longrightarrow 0$$

denote the initial part of a minimal free resolution of R/m and let $\{e_i\}_{1 \leq i \leq n}$ be the standard basis of R^n . Then $L \ni f_{ij} \colon = x_i e_j - x_j e_i$ $(1 \leq i < j \leq n)$. We denote by K the R-submodule of L generated by the Koszul relations $\{f_{ij}\}_{1 \leq i < j \leq n}$. Let

$$N = mL + K$$
 and $M = R^n/N$.

Then we have

Proposition 2.1. M is a Buchsbaum R-module of $\dim_R M = d$ and

$$\begin{split} H_{\mathfrak{m}}^{i}(M) &= L/N & \quad (i=0)\,, \\ &= R/\mathfrak{m} & \quad (i=1)\,, \\ &= (0) & \quad (i \neq 0\,, 1\,, d)\,. \end{split}$$

First let us give a proof of (1.1) modulus (2.1). It suffices to prove the implication (2) \Rightarrow (1). Because $\operatorname{Ext}_R^i(R/\mathfrak{m},M) \stackrel{\varphi_M^i}{\to} H^i_\mathfrak{m}(M)$ is surjective for any $i \neq d$, we get by [5, p. 734, Lemma 6] that the homomorphism

$$j_{\star}$$
: $\operatorname{Ext}_{R}^{2}(R/\mathfrak{m}, L/N) \to \operatorname{Ext}_{R}^{2}(R/\mathfrak{m}, M)$

induced from the imbedding $H_m^0(M) = L/N \xrightarrow{j} M$ is injective. Let

$$\cdots \to F_3 \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 = R^n \xrightarrow{\partial_1 = [x_1 x_2 \cdots x_n]} F_0 = R \to R/\mathfrak{m} \to 0$$

denote a minimal free resolution of R/m and recall that the map

$$j_*$$
: $\operatorname{Ext}_R^2(R/\mathfrak{m}, L/N) \to \operatorname{Ext}_R^2(R/\mathfrak{m}, M)$

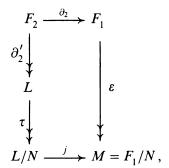
is induced from the following homomorphism

$$\cdots \to \operatorname{Hom}_{R}(F_{1}, L/N) \xrightarrow{\partial_{2}^{\star}} \operatorname{Hom}_{R}(F_{2}, L/N) \xrightarrow{\partial_{3}^{\star}} \operatorname{Hom}_{R}(F_{3}, L/N) \to \cdots$$

$$\downarrow j_{\star} \qquad \downarrow j_{\star} \qquad \downarrow j_{\star}$$

$$\cdots \to \operatorname{Hom}_{R}(F_{1}, M) \xrightarrow{\partial_{1}^{\star}} \operatorname{Hom}_{R}(F_{2}, M) \xrightarrow{\partial_{3}^{\star}} \operatorname{Hom}_{R}(F_{3}, M) \to \cdots$$

of complexes. Consider the commutative diagram



where ε , τ are the canonical epimorphisms and $\frac{\partial'_2}{\tau \circ \partial'_2}$ denotes the epimorphism induced from ∂_2 . Then the cohomology class $\overline{\tau \circ \partial'_2}$ of $\tau \circ \partial'_2$ is contained in the kernel of $\operatorname{Ext}^2_R(R/\mathfrak{m},L/N) \xrightarrow{j_*} \operatorname{Ext}^2_R(R/\mathfrak{m},M)$. Because $\operatorname{Hom}_R(F_2,L/N) = \frac{\operatorname{Ext}^2_R(R/\mathfrak{m},L/N)}{\tau \circ \partial'_2} = 0$ whence L=N. As $N=\mathfrak{m}L+K$ by definition, we get L=K, that is the module L of the relations of the minimal system x_1,x_2,\ldots,x_n of generators for \mathfrak{m} is generated by the Koszul relations $\{x_ie_j-x_je_i\}_{1\leq i < j \leq n}$. Thus R has to be regular (by an easy Koszul argument: $H_1(x_1,x_2,\ldots,x_n;R)=(0)$ if and only if x_1,x_2,\ldots,x_n is an R-regular sequence).

Proof of Proposition 2.1. By the short exact sequence $0 \to L/N \to M \to m \to 0$, we get the second assertion. Hence M is a generalized Cohen-Macaulay R-module, that is the length $l_R(H^i_{\mathfrak{m}}(M))$ of $H^i_{\mathfrak{m}}(M)$ is finite for any $i \neq \dim_R M$, and $I_R(M) = l_R(L/N) + (d-1)$ (cf., e.g., [6,7]). To prove that M is Buchsbaum we need the following lemma.

644 SHIRO GOTO

Lemma 2.2 [7, Proposition 3.2]. Let R be a Noetherian local ring and let M be a generalized Cohen-Macaulay R-module. Then M is Buchsbaum if and only if the maximal ideal m of R contains a system x_1, x_2, \ldots, x_n of generators that satisfies the following condition: For any $1 \le i_1 < i_2 < \cdots < i_s \le n$ $(s = \dim_R M)$, the elements $x_{i_1}, x_{i_2}, \ldots, x_{i_s}$ form a system of parameters for M and one has the equality

$$l_R(M/\mathfrak{q}M)-e_{\mathfrak{q}}(M)=I_R(M)$$

where $q = (x_{i_1}, x_{i_2}, \dots, x_{i_s})R$.

Let $1 \le i_1 < i_2 < \dots < i_d \le n$ be integers and put $q = (x_{i_1}, x_{i_2}, \dots, x_{i_d})R$. Then by virtue of (2.2), because our module M is generalized Cohen-Macaulay and $\dim_R M = d$, we have only to see the equality

$$l_R(M/qM) - e_q(M) = l_R(L/N) + (d-1).$$

Recall that the maximal ideal m is a Buchsbaum R-module of $I_R(\mathfrak{m})=d-1$ (cf. [1, Proposition (2.4)]). Then as $e_{\mathfrak{q}}(M)=e_{\mathfrak{q}}(\mathfrak{m})$, we have

$$\begin{split} l_R(M/\mathfrak{q}M) - e_{\mathfrak{q}}(M) &= l_R(M/\mathfrak{q}M) - e_{\mathfrak{q}}(\mathfrak{m}) \\ &= l_R(M/\mathfrak{q}M) - [l_R(\mathfrak{m}/\mathfrak{q}\mathfrak{m}) - (d-1)] \\ &= [l_R(M/\mathfrak{q}M) - l_R(\mathfrak{m}/\mathfrak{q}\mathfrak{m})] + (d-1) \,. \end{split}$$

Consequently, in order to prove that M is Buchsbaum, it is enough to check the equality

$$l_R(M/\mathfrak{q}M) = l_R(L/N) + l_R(\mathfrak{m}/\mathfrak{q}\mathfrak{m})\,,$$

that is the sequence

$$0 \to L/N \to M/\mathfrak{q}M \to \mathfrak{m}/\mathfrak{q}\mathfrak{m} \to 0$$

induced from the short exact sequence $0 \to L/N \to M \to \mathfrak{m} \to 0$ remains exact, or equivalently

$$L \cap \mathfrak{q} \cdot R^n \subset N$$

which immediately follows from the next

Claim (2.3). $L \cap \mathfrak{q} \cdot R^n \subset K$.

Proof of Claim 2.3. We may assume $q = (x_1, x_2, \dots, x_d)R$. As

$$q \cdot R^n \subset \sum_{i=1}^d \operatorname{Re}_i + K$$
,

it suffices to show that

$$L \cap \sum_{i=1}^{d} \operatorname{Re}_{i} \subset K.$$

Let

$$v = \sum_{i=1}^{d} a_i e_i \in L$$

and we have $\sum_{i=1}^d a_i x_i = 0$. Because x_1, x_2, \dots, x_d is an R-regular sequence, we see

$$\sum_{i=1}^{d} a_i e_i = \sum_{1 \le i < j \le d} b_{ij} (x_i e_j - x_j e_i)$$

for some $b_{ij} \in R$ which means $v \in K$ as required. This completes the proof of Theorem (1.1) as well as (2.3).

3. Counterexamples

Let M be a Buchsbaum R-module of $\dim_R M = s$ and $\operatorname{depth}_R M = t$. Then it is easy to check that the canonical map $\operatorname{Ext}_R^t(R/\mathfrak{m},M) \stackrel{\varphi_M^t}{\to} H^t_\mathfrak{m}(M)$ is an isomorphism if t < s (cf. [5, p. 736, Corollary 1.1]). Accordingly, whenever t < s and $H^i_\mathfrak{m}(M) = (0)$ for all $i \ne t$, s, the Buchsbaum R-module M enjoys the surjectivity property (2) stated in (1.1). This is the reason why in Theorem (1.1) we have assumed that dim $R \ge 2$. By the same reason we see that in case dim R = 2, the ring R satisfies the condition (2) of (1.1) if and only if any Buchsbaum R-module M of $\dim_R M = 2$ enjoys the surjectivity property (2) in (1.1).

Proposition 3.1. Let R be a two-dimensional local integral domain of e(R) = 1. Then R satisfies the condition (2) of (1.1).

Proof. By [4, Satz 2] we may assume that R is nonregular. Then R possesses no Buchsbaum module M of $\dim_R M = 2$. In fact, assume the contrary and choose a Buchsbaum R-module M of $\dim_R M = 2$. Then as R is an integral domain, R is contained in the endomorphism algebra $\operatorname{End}_R M$ whence \widehat{R} is a subalgebra of $\operatorname{End}_{\widehat{R}} \widehat{M}$. Let $\mathfrak{P} \in \operatorname{Ass} \widehat{R}$. Then as $\mathfrak{P} \in \operatorname{Ass}_{\widehat{R}} \widehat{M}$ and as \widehat{M} is a Buchsbaum \widehat{R} -module, we have either $\dim \widehat{R}/\mathfrak{P} = 2$ or $\mathfrak{P} = \mathfrak{m} \widehat{R}$ (cf. [5, p. 730, Lemma 2]). Of course, since depth $\widehat{R} > 0$, we get $\mathfrak{P} \neq \mathfrak{m} \widehat{R}$ and so $\dim \widehat{R}/\mathfrak{P} = 2$ for any $\mathfrak{P} \in \operatorname{Ass} \widehat{R}$. Hence R is unmixed, which implies by [3, (40.6) Theorem] that R is a regular local ring because e(R) = 1 by our assumption—this contradicts the choice of R. Thus R possesses no Buchsbaum module M of $\dim_R M = 2$.

In his famous book [3, p. 203, Example 2] Nagata constructed a two-dimensional nonregular local integral domain R of e(R) = 1. His example asserts by (3.1) that the hypothesis in (1.1) that R is Cohen-Macaulay is not superfluous.

Proposition 3.2. Let S be a three-dimensional regular local ring with maximal ideal n. Let $X \in n \setminus n^2$ and let I be a proper ideal in S of $ht_S I \geq 2$. Then the ring R = S/XI satisfies the condition (2) in (1.1).

Proof. Let $\mathfrak{P} = XR$. Then R possesses exactly three isomorphism classes of indecomposable Buchsbaum R-modules M of $\dim_R M(=\dim R) = 2$ and the

646 SHIRO GOTO

R-modules

$$M_0 = R/\mathfrak{m}\mathfrak{P}$$
, $M_1 = \mathfrak{m}/\mathfrak{P}$, and $M_2 = R/\mathfrak{P}$

are the representatives of them (cf. [2, Theorem (3.1)]). Since $H_{\mathfrak{m}}^{i}(M_{j})=0$ if $i\neq j$, 2, the R-modules $M_{j}(j=0,1,2)$ enjoy the property (2) in (1.1). Because any Buchsbaum R-module M of $\dim_{R} M=2$ is isomorphic to a direct sum of M_{j} 's together with a vector space over R/\mathfrak{m} , we see that M has the required property (2) stated in (1.1). Thus R satisfies the condition (2) of (1.1).

In the above proposition, if we choose $I = \mathfrak{n}$, $R = S/X\mathfrak{n}$ is a nonregular Buchsbaum ring. This example shows that the hypothesis in (1.1) that R is Cohen-Macaulay cannot be replaced by the weaker one that R is Buchsbaum.

REFERENCES

- 1 S. Goto, On Buchsbaum rings, J. Algebra 67 (1980), 272-279.
- 2 _____, Commutative Algebra (edited by M. Hochster, C. Huneke, and J. D. Sally), Proceedings of a Microprogram held June 15-July 2, 1987, Springer-Verlag (1989), 247-263.
- 3 M. Nagata, Local rings, Interscience, New York, 1962.
- 4 J. Stückrad, Über die kohomologische Charakterisierung von Buchsbaum-Moduln, Math. Nachr. 95 (1980), 265-272.
- 5. J. Stückrad and W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math. 100 (1978), 727-746.
- 6 N. Suzuki, Canonical duality for unconditioned strong d-sequences, J. Math. Kyoto Univ. 26 (1986), 571-593.
- 7 N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49.

Department of Mathematics, Nihon University, College of Humanities and Sciences, Tokyo 156, Japan