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DEFINING BERNOULLI POLYNOMIALS IN Z/pZ
(A GENERIC REGULARITY CONDITION)

ANDREW GRANVILLE AND H. S. SHANK

(Communicated by William Adams)

Abstract. We consider the problem of whether Bernoulli polynomials are

uniquely defined by certain interpolation equations. This leads to an inter-

esting characterization of regular primes, a new insight into the p-divisibility

of Fermât quotients, and a generalization of Voronoi's congruences.

The Bernoulli polynomials Bm(x), m e {0, 1, 2, ...} - N, satisfy the

difference equation

(1) F(xTl)-F(x) = mxm"1

and the interpolation equation

,2,       fw = 9-[f(i)+f(i±l) + ... + f(£±l^)]

for each integer q > 2, and for all real numbers x .

It is not hard to show that either (1) or (2) together with the value of 7(0)

completely characterize the polynomial F(x). However, Dickey, Kairies, and

Shank [2] showed that in the field Z/pZ this does not necessarily happen when

q = 2 in (2). In this note we extend their work and give explicit criteria to

determine when the above characterization occurs.

Throughout we shall assume that the prime p is given and that we are consid-

ering the equations (1) and (2) only for functions 7: Z/pZ —► Z/pZ. We start

by observing that, as a consequence of Fermat's Little Theorem (xp - x for all

x e Z/pZ), we need only consider values of m in the range 1 < m < p - 1 :

Let n be the least positive residue of m (mod p - 1 ). In ( 1 ) if p divides m

then F(x) = 7(0) for all x ; otherwise C7(x): = F(x)/m satisfies G(x + I)-

G(x) = xm~[ - x"~l . In (2) we simply can replace q'"~l by q"~l .

The Von Staudt-Clausen theorem [3,1] states that p divides the denominator

of the zzzth Bernoulli number Bm exactly when p - 1 divides m (and that p

divides pB    , + 1). Thus Bm(x) is not well defined in Z/pZ for m > p - 1 .
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We adjust for this problem by instead using the function

Cm(x) = ^[BJx)-BJ

which, by (1), equals the sum of the m- 1th powers of the nonnegative integers

less than x , at each positive integer x . Our key lemma is

Lemma 1. Suppose that p is a given prime and n and v are integers with

1 < n < p - 1 and F(x + 1) - F(x) = vx"~ for each nonzero element x in

Z/pZ. Then F(x) = vCn(x) + 7(0) z'zz Z/pZ.

Proof. Let G(x) = F(x)-vCn(x). By (1) we have G(x+\)-G(x) = 0 for each

x/0. Therefore G(p) = G(p - 1) = •■• = (7(1) and G(p) = G(0) = 7(0),
giving the result.

Taking zz to be the least positive residue of m (mod p) in Lemma 1 gives

Theorem 1. For any given prime p and integer m, the equation ( 1 ) together with

the value of 7(0) completely (and uniquely) characterize a function F : Z/pZ —►

Z/pZ.

We now move on to the more interesting (and difficult)

Theorem 2. Suppose that prime p and integers m and q are given, where

1 < m < p-\ and q is a primitive root (mod p). For any function F: Z/pZ -*

Z/pZ we have that (2) is satisfied for every x e Z/pZ if and only if

(a) F(x)=(F(2)-F(l))BJx)/m form<p-2;

(b) 7(x) = (7(2)-7(l))Cp_1(x) + 7(0)       for m = p - \,

where

(7(2)-7(1))^-=0.

Proof. Let G(x) = F(x + 1) - F(x) so that, by taking the difference of the

equations for qx + 1 and qx in (2) we get

(3) G(qx) = qm~XG(x)       for each x e Z/pZ.

Therefore G(x) = vxm~l by (3), where v = (7(1), as q is a primitive root

(mod p). By Lemma 1 this gives F(x) = vCm(x) + 7(0). When we substitute

this back into (2) we find that

(4) (^-l)(7(0)-^m)=0.

(a) If 1 < m < p - 2 then p - 1 does not divide m and so, as q is

a primitive root, (qm - 1) ^ 0. Therefore 7(0) = (v/m)Bm and so we get

F(x) = vBJx)/m.
(b) If m = p - 1 then, as 7(0) g Z/pZ, we have (qm - 1)7(0) = 0 ; thus,

as pBpX = p - 1 (mod p) (by the Von Staudt-Clausen theorem), we get from

(4) that v(q"~x - l)//z = 0.
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A number of corollaries follow.

Corollary 1. Suppose that prime p and integers m and q are given, where

1 < m < p - Ï and q is a primitive root (mod p). Then the equation (2),

together with the value of 7(0), completely (and uniquely) characterize the func-

tion F: Z/pZ -> Z/pZ if and only if (qm -\)Bm£0 (mod p).

Proof. In order for F(x) to be completely characterized we see, from Theorem

2, that we must be able to compute the value of 7(2) - 7(1) from the given

information.

In (a) this occurs only when Bm(0)/m ^ 0 (mod p) (in which case F(x) =

F(0)Bm(x)/BJ , which is equivalent to (qm-\)Bm ± 0 (mod p), as (qm-1) #

0 (modp) and Bm = Bm(0).

In (b), as C   ,(0) = 0, the value of 7(2) - 7(1) can be computed only if

(qp~ - \)/p ^ 0 (mod p) (in which case F(x) — 7(0)) which is equivalent to

(qp~  - 1)7?    . ^ 0 (mod p) by the Von Staudt-Clausen theorem.

A prime p is defined to be regular if p does not divide the class number

of the cyclotomic field K = Q(Ç ), which means that for any ideal class 3 of

K, there exists an ideal class D, for which T)p = Z • Kummer showed, as a

consequence of this, that Fermat's last theorem is true for any regular prime

exponent p . He also proved that p is regular if and only if p does not divide

any of the Bernoulli numbers Bm for m even with 1 < m < p - 3. We give

here an equivalent set of criteria to regularity:

Corollary 2. A given prime p is regular if and only if for a given primitive root

q (mod p), equation (2) (for each x e Z/pZ) together with the value of 7(0)

completely and uniquely characterize the function F : Z/pZ —> Z/pZ for each

even positive integer m, less than p - 2.

It should be noted that Bm — 0 for any odd integer m > 1, and so one can

deduce from Corollary 1:

Corollary 3. Suppose that prime p and integers m and q are given, where

3 < m < p - 2, m is odd and q is a primitive root (mod p). Then the

equation (2), together with the value of 7(0), is satisfied by more than one

function F : Z/pZ —► Z/pZ.

It is also important in number theory to study those values of q for which

p divides the "Fermât quotient" (qp~ - \)/p . Theorem 2 gives a new insight

into that question:

Corollary 4. Suppose that prime p and integer q are given, where q is a primi-

tive root (mod/z). There exists a nonconstant function F : Z/pZ —> Z/pZ that

satisfies

^-H'GM'r)*"-*'^)]
if and only if p   divides qp    - 1.
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Another interesting question is to consider (2) in the case that q is not a

primitive root (mod p).

Theorem 3. Suppose that prime p, and integers m , q, and k are given, where

1 < m < p - 1, k divides p - 1 and q is of order (p - \)/k (mod p). Suppose

that the multiplicative subgroup of Z/pZ \ {0}, generated by q, has cosets Ax,

A2, ..., Ak. For any function F: Z/pZ -* Z/pZ we have that (2) is satisfied

for every x G Z/pZ if and only if there exist vx, v2, ..., vk e Z/pZ such that

k

(5) 7(x) = 7(l) + £>,     ¿2     ym~l        for\<x<p

i=l      i<y<x-i

and

(6) q(q~m- 1)7(1) = £tz.     £     y

i=í      i<y<p-i
y€A,

Remark. These formulae are, of course, natural generalizations of the famous

formulae of Voronoi [4]: i.e. Take each v¡ = m to get

q(q~m - \)Bm = m    J^    y
1<3'<Z'-1

Proof. As in the proof of Theorem 2, we see that (3) holds where  G(x) =

F(x + 1) - F(x). Therefore, if x e A¡ then G(x) = xm~ v¡, for some fixed

v¡ e Z/pZ, giving (5). Substituting (5) into (2) for x = 0 gives (6), and it is

easily verified that if (5) and (6) are satisfied then so is (2).
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