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ABSTRACT. For a prime p let Q = Q, denote the completion of the algebraic
closure of the field of p-adic numbers with p-adic valuation |- |. Given a
group G consider the ring of formal sums

h(Q,G) = {Zaxx ax €Q, |ax|—v0}

X€EG

Motivated by the study of group rings and the complex Banach algebras
11(C, G), we consider the problem of when this ring is semisimple (semiprimi-
tive). Our main result is that for an Abelian group G, /;(Q, G) is semisimple if
and only if G does not containa Cpoo subgroup. We also prove that /;(Q, G)
is semisimple if G is a nilpotent p’-group, an ordered group, or a torsion-free
solvable group. We use a mixture of algebraic and analytic methods.

I. INTRODUCTION

Throughout p is a fixed prime, and all fields are contained in Q = Q
the completion of the algebraic closure of the field of p-adic numbers Q
and contain Q,. If k is such a complete field denote by |-|: kK — R the
non-archlmedean extension of the p-adic valuation on Q Given a group G
consider the ring of formal sums

I(k,G) = {Zax a €k, |a|—+0}

xXeG

where |a | — 0 means that for every ¢ > 0, only finitely many of the «  satisfy
| | > &. We are interested in the problem of whether the ring, / (k,G), is
semisimple (sometimes called semiprimitive) or not. Qur main results are that
for Abelian groups G, /,(k,G) is semisimple if G does not contain a Cheo
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subgroup (§3), and that for a large class of solvable groups including all nilpotent
p'-groups, [,(Q,G) is again semisimple (§4).

The algebra /,(Q,,G) was studied in [10]. They consider the question of
when /, (Qp , @) is Noetherian, Artinian, or prime and ask when it is semiprime.
Our work was also motivated by the well-known result that the Banach algebra

over C
1,(G) = {Z axia, €C,) o< oo}
xX€G
(here || denotes the usual absolute value on C) is always semisimple (cf. [8]
or [13]). In contrast it is known that /,(Q, C,o) is not semisimple [4].
We conclude the paper with a list of some open problems.

II. GENERAL RESULTS

Define ||-||: /,(k,G) — R as follows: if f=} a x €l (k,G) then ||f] =
sup, . la,|. Also, write supp(f) = {x € G: a, # 0}. In the following lemma
we collect a number of (very easy to prove) properties of /,(k,G):

2.1. Lemma. Let k be a complete subfield of Q containing Q, and let G be
a group. Then:

(i) If fel (k,G) then supp(f) is countable.
(i) ||f]l = max o, | if f=3 a.x, and we have:
Ifll >0 forall f,and ||f|]|=0 ifand only if f=0;
I/ + gll < max{||f||,lIgll} and | f+gll=I/I if gl <ISIl;

/gl < Alel
In particular the topology defined by || -|| turns 1 (k,G) into an ul-

trametric topological ring which is complete.

(iii) The maximal right (or left ideals) of [,(k ,G) are closed.

(iv) Let ¢:1,(k,G) — Q be a k-algebra homomorphism. Then ¢ is con-
tinuous if and only if |o(f)| < ||f|| forall fel (k,G).

(v) Let ¢p: G — Q be a k-algebra homomorphism where |¢p(x)| =1 for all
x €G. Then ¢ has a unique continuous extension to I (k,G).

Proof. (i) and (ii) are trivial. As for (iii), let M be a maximal right ideal of
l,(k,G). Then its closure M is also a right ideal. If 1 € M then we can find
a sequence {f,} of elements of M with f, — 1. Butif ||l - f || <1 then
f,=1—(1—f,) is a unit (with inverse E_f:o(l —-fn)’_f l,(k,G) since I (k,G)
is complete). This is impossible,so 1 ¢ M andso M =M.

(iv) Assume ¢ is continuous and suppose there exists x € G with |p(x)| #
1. Choose a € k with 0 < |a| < 1. Replacing x by a suitable power we may
assume that |p(x)| > a~'. Consider the element f = Yopax € l(k,G).
If f = 3" ,a'x" then clearly ||f — f || = 0, while |p(f,) — o(f,_)| =
la"p(x)"| = o0, so the sequence {¢(f,)} is not convergent in Q. This contra-
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dicts the continuity of ¢ . Thus |¢(x)| =1 forall x€ G. Let f=} _,a x€
l,(k,G). By continuity ¢(f) =3 a ¢(x), thus |p(f)| < | f]|. The other di-
rection is trivial.

(v) It is easy to check that the unique continuous extension is given by

p(Xax)=3ap(x). O

If R is aring we write J(R) for the Jacobson radical of R. The following
result enables us to concentrate on countable groups:

2.2. Lemma. If k is a complete field and G is a group, then
J(l,(k,G)) c I,k H)),
H

where the union ranges over all countable subgroups H of G.

Proof. Let f € J(I,(k,G)) and let H = (supp(f)). We claim that f €
J(l,(k,H)). If gel (k,H) then there exists f €l (k,G) with fa-gf)=
1. Let T be aleft transversal of H to G containing 1, and write /' =3 ¢f,,
where f: €l,(k,H). It follows from Zteth:(l—gf) =1 that f;(l—gf) =1.
This is for all g€/, (k,H),so fe€ J(l,(k,H)), as required. O

If k is a field write X, for the class of all groups G for which /,(k,G) is
semisimple. Not much is known about the class-theoretic properties of X, . As
an example we have:

2.3. Theorem. Let k be a complete field, and let {N,: A € A} be a directed
system of normal subgroups of G such that every G/N, € X, . Then G € X, .

Proof. Let 0 # f € l,(k,G), and write f =Y a.x, + g where |o,| = | f]|
forall i=1,...,r and | g|| < |f|l. By assumption there exists 1 € A with
xx;' ¢ Ny for 1 <i# j<r. The mapping 0:/,(k,G) — I,(k,G/N))
obtained by extending the natural homomorphism G — G/N, is easily seen
to be a well-defined surjective continuous ring homomorphism. Now 6(f) =
Y a,0(x;) + 6(g), the elements 6(x,) are distinct, and [|6(g)]| < llgll < If]l-
Thus 6(f) # 0, and since J(/,(k,G/N,)) = {0} this implies that f ¢
J(l,(k,G)), as required. O

2.4. Corollary. If G is residually finite then G € X, for all k.

Proof. If N <, G then / (k,G/N) is simply the group ring of G/N over k,
which is semisimple by Maschke’s Theorem ([11], 2.4.2). O

As another example we have

2.5. Theorem. Let k be complete, with k the residue class field of k. If the
group ring kG is semisimple and has no zero divisors then G € X, .
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Proof. Suppose J = J(/,(k,G)) # 0, so it contains an element g with |g|| =
1. Choose any f € [,(k,G) with ||f]| = 1. If ||[1 - fg|| <1 then fg =
1 — (1 - fg) is invertible, which is impossible since g € J. Let u € /,(k,G)
be such that u(1 — fg) = 1. We claim that |u|| = 1. First, note that

= lu(l = o)l < llulllt - fell = llul .

Now set

R={yel(k,G): |yl <1},
M={yel(k,G): |yl <1}.
Then M is an ideal of R and R/M = kG (for the coefficients of the elements

of R belong to the valuation ring of k, and the homomorphism onto k is
easily seen to extend to one of R onto kG with kernel M). Let n: R — R/M

denote the canonical map. If |lu|| > 1 choose a € k with |a| = ||u||. Then
(@ 'u)(1 - fg) =a™', and so (¢ 'w)n(l — fg)n = o 'm = 0. But this is
impossible since ||a_'u|| =||1 - fg|l=1 and kG has no zero divisors. Thus

lul| = 1. Butthen (um)(1—-fngn) =1, and since thisis true forall f €/, (k,G)
it follows that gz € J(kG) = {0}, contradicting ||g||=1. O

2.6. Corollary. Let k be a complete field.

(i) If G isawup. group (e.g. an ordered group) then G € X, .
(ii) If k is uncountable and kG has no zero divisors then G € X e

Proof; These are consequences of 2.5 and well-known facts about the group-
ring kG (cf. [11], 13.1.2, 13.1.9, 7.1.6) in view of the fact that u.p. groups
are t.u.p. groups [14]. O

2.7. Corollary. Let k be complete with residue class field k, and let G and
H be nontrivial groups. If the group ring k(G x H) has no zero divisors then
GxHeX,.

Proof. The assumptions imply that k(G x H) is semisimple [9]. The result
follows from 2.5. 0O

2.8. Corollary. Let k be complete with residue class field k . Suppose G is a
torsion-free solvable group. Then G € X, .

Proof. In [7] it is shown that for such groups G, k(G) has no zero divisors. It
is well known that k(G) is semisimple (cf. [11] 7.4.6). O

III. ABELIAN GROUPS

For f € [,(k,G) let v(f) = lim,_, /"1 (it is easy to see that v(f)
is well defined, [12] 6.22). Say f is topologically nilpotent if v(f) = 0. Our
aim is to show that for Abelian groups G, the Jacobson radical of /(k,G)
is precisely the set of topological nilpotents in /,(k,G), as is the case for the
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complex algebra /,(G) [8]. We will write ®,(G) for the set of all continuous
k-algebra homomorphisms ¢: /,(k,G) — Q and write (D;((G) for the set of
¢ € ®,(G) such that ¢(/,(k,G)) is a field. We have:

3.1. Lemma. Let G be an Abelian group, with H a subgroup of G. Then
any element of ®, (H) (respectively, dJ;c(H )) can be extended to an element of
D, (G) (respectively, ®2(G)).

Proof. Apply Zorn’s Lemma to the set of all triplets (G,,¢,E) where G, O H
is a subgroup of G, ¢ € ®,(G,), (respectively, CD;((GI)) , and E =
¢(l,(k,G,)). It is routine to show that G belongs to a maximal element (cf.
[11]1.2.7). O

We need to introduce an auxiliary seminorm on /,(k,G): if f €[ (k,G)
let

171, = sup{le(f)]: ¢ € D,(G)}.
We have the following result:

3.2. Lemma. Let k be a complete field, and let G be an Abelian group.

) v(f+g) <max{v(f), v(g)} forall f, g€l (k,G).
v(f) < |IfNl forall fel (k,G).

)
) v is continuous.
d) 11N, <v(f) < oIS, forall fel(k,G).

Proof. For (a) see [12], 6.22. Part (b) is obvious. Part (c) follows easily from
(a) and (b). Consider (d). The inequality ||f||sp <wv(f) follows from ||f”||sp <
l/"l. To prove the second inequality, first consider the case when G is finitely

generated, and let A € k satisfy ||f],, < |Al. Then [p(A~' f)] = [A”'[lo(/f)] <
Ill_'llfllsp <1 forall g€ ®,,andso (A"'f)" — 0 as n — oo [15]. Thus for
all sufficiently large n we have |[(A™'f)"|| < 1, whence ||f"||'" < |A|. Thus
v(f) < |A| whenever A € k satisfies [f]|,, < |4|. Since |k*| 2 {p": n € Z},
and in particular has 0 as an accumulation point, it follows that v(f) = 0 if
I/ll;, = 0. It also follows that if |f||;, # O then there exists A € k, with

In the general case write f =1lim,_ __ f where each f, €/ (k,G) has finite
support in G. Given ¢ > 0 choose N large enough so that || f - f,|| < ¢, and

[v(fy) —v(f)] < ¢&. Choose y € d);((G) such that |y (fy)| > p_'v(fN) —€.
(The existence of y follows from the first part of the argument applied to
(supp(fy)) and 3.1.) Thus

1£1ls, 2 1w 2 W)l = W (f = £l > P~ v(fy) —e = If = fy)l
>p () -p " Wy — v -26>p () - 2+ e.

—~ o~

a
b
c

~_~ —~

Since ¢ is arbitrary, the result follows. 0O
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The proof shows that when |k*| is dense in the positive real numbers, then
we obtain v(f) < | fll;, , and so in fact v(f) = ||,
We can now prove the following:

3.3. Theorem. Let k be a complete field G an Abelian group, and f €
l,(k,G). Then the following are equivalent:

(@) fel((k,G)).
(b) @(f) =0 forall ¢ €D (G).
(c) f is topologically nilpotent.

)
(d) ¢(f) =0 forall p € ®(G).

Proof.
(a) = (b) is trivial, since ker ¢ is a maximal ideal of /,(k,G).
(b) = (c) follows from 3.2 since (b) implies that ||f||sp =
)

() = (a): let g €/,(k,G). Since [[(¢/)"['"" < llglllf"|'"" — 0 we have
(Nl = 0,s0 ¥72,(8/)" €1,(k,G). In other words 1 — gf is invertible,
whence fe€ J(/,(k,G)).

(¢) = (d): a continuous homomorphism must map topological nilpotents
to topological nilpotents, and the only topological nilpotent in a field is the zero
element.

(d) = (b): Obviovs. O

The following result is useful for dealing with extensions:

3.4, Lemma. Let G be Abelian, H a subgroup of G, and let k be a complete
field. Assume that H € X, and G/H € X, for all complete extension fields
EDk. Then Ge X, .

Proof. Let =Y _c.ax€J((k,G)). Let ¢p € D, (H), and let 6 € P, (G)
be any extension of ¢ (such exist by 3.1). Put E = 6(/,(k,G)), a subfield
of Q. Let x — X denote the natural map G — G/H. If u € ®x(G/H),
where E is the completion of E, consider the map y: l[,(k,G) — Q defined
by w(x) = 0(x)u(x) for all x € G, and extended by linearity and continuity to
the whole space. Since y € ®,(G), y(f) =0 by 3.3. Put . =a 0(x)€ E,
and y; = Z B, € E. In view of the definition of ¥ we have 0 = w(f) =
EXGG/H Y=l x) ,u(z_y_x) This is for all u € ®x(G/H), and [ (E,G/H)
is semisimple by assumption, so by 3.3 again, y. = 0 for all X € G/H. But
Yy =X isequivalent to y € Hx so we have 3, , a, 6(hx) =0, where x € G
is fixed. Cancelling a factor of 6(x), and remembering that 6 is an extension
of ¢, the above becomes ¢(3,,, @, h) = 0. But this is for all ¢ € ¥} (H),
so finally every o, =0, as required. O

We need one more preliminary result.

3.5. Lemma. Let G be an Abelian p'-group, and let k be a complete sub-
field of Q. Given distinct elements x,, ...,x, of G and elements c, ... ,c

n
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of k, there exists a continuous k-homomorphism ¢:1 (k,G) — Q such that
|¢(27=| C,‘xi)l = ” E,’ ci'xi” .

Proof. Let f = Y c,x;. We may assume that ||f|| = 1. If we can find a
continuous ¢ such that |¢(f)| > 1 then the trivial fact |@(f)| < || f]| suffices
to show that |p(f)|=1=|f].

The proof of |¢(f)| > 1 proceeds by induction on 7, the case n = 1 being
trivial (let ¢(x) =1 forall x € G). Assume the result is true for n—1 but false
for n. Thus there exist distinct elements X,...,x,€G,and ¢, ...,c, €k
with max|c;| = 1, such that |p(f)| < 1 forall ¢ € ®,(G) (where f =} cx;).
We may suppose |c,| = 1. It is easy to see thatif A1 # 1 isa p’-power root of
unity in Q then |1 —4|=1. Since x 'xn # 1 we can find a p’-power root of

unity 1 € Q, 1 # 1, of the same order as xl_lxn . (If the order of xl_lxn is
infinite let A # 1 be any p’-power root of unity.) Define a continuous k-algebra
homomorphism ¢: /| (k,(xl_lxn)) — Q by (o(xl_]xn) = A. Extend this to an

element (still denoted by ¢) of ®,(G). Then

9(x,) = o(x,)| = le(x I — p(x] 'x,) = 1,

and so max, |c,(¢(x,) — ¢(x;))| = 1. By the inductive hypothesis there exists a
continuous homomorphism x: /,(k,G) — Q such that

doclo(x) —o(x))u(x)| 2 1.
i=1
The product homomorphism ¢u (defined by pu(3-a x) =3 a p(x)u(x)) is
also continuous, and so

(*)

S cplxulx)| <1

i=1
Since |¢(x,)| =1 we also have

<1,

> co(x)u(x,)
i=1

Yo cnlx,)
i=1

and thus
<1.

Z C,‘(¢(x|) - ¢(x,‘))1u(x,‘)
i=1

This contradicts (), and proves the result. O
Our main result on Abelian groups is

3.6. Theorem. Let k be a complete subfield of Qp, and let G be an Abelian
group with no Cpo subgroups. Then G € X, .

Proof. We proceed via a series of steps.
Step 1. We may assume that G is a p-group: If Gp denotes the maximal
p-subgroup of G and E is a complete extension field of k , then we claim that
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G/Gp € X . Forif f # 0 is an element of / (E, G/Gp) then by 3.5 we can
find a continuous homomorphism ¢ € ®;(G/G,) such that lo(OHI=IfIl #0,
so J(I|(E,G/G,)) = {0} by 3.3. Thus if G, € X, , then G € X; by 3.4. We
are now in the case where G is a countable (2.2) Abelian p-group with no C oo
subgroup.

Step 2. If G has finite exponent p” then G € X .- If G has exponent
p then it is a countable vector space over GF(p), and is therefore residually

finite. Thus G € X, by 2.4. In general by induction on m we have G/G’ "
and G*"" € X, (for all fields k), and so G € X, by 3.4.

Step 3. If G has no element of infinite height then G € X, : The assumption
is that N>_, G = (1), s0 {G" :m =1,2,..} is a directed system in G.
Each G/G’ € X, by Step 2, and so G € X, by 2.3.

We can now deal with countable reduced p-groups G. Consider the Ulm
sequence of G ([6], §76): put G\ = ﬂ:’;l G ; if ¢ is not a limit ordinal put
G""' = (G, and if 2 is a limit ordinal put G* =,_,G'”. Since G
is reduced we have G'” = (1) for some ordinal 7. We prove, by transfinite
induction on o, that G/G(") € X, forall . For ¢ = 1 the group G/G(”
has no elements of infinite height and so G/ GVex . by Step 3. If o is not
a limit ordinal then G~ "/G'” € X, by Step 3, and G/G~" € X, (for all
complete E) by induction, so G/ G"ex . by 3.4, If ¢ is limit ordinal then
{G” /G p < 6} isa directed system in G/G'”), and since each G/G"” € X,
by induction, we have G/ Gex . by 2.3. This establishes the inductive step.
In particular G = G/G'"” € X . » as required. O

In general /(k, pr) is semisimple if and only if k does not contain in-
finitely many pth-power roots of unity ([4]; see also [1], [5]). In fact, if k*
contains a Cpoo subgroup then / (k, pr) even contains nonzero nilpotent el-
ements. Thus no improvement to 3.6 without imposing additional restrictions
on the field k is possible and the following corollary is obvious:

3.7. Corollary. If G is an Abelian group, then 1 (Q,G) is semisimple if and
only if G does not contain a Cpoo subgroup.

IV. SOLVABLE GROUPS
To obtain results for solvable groups we need another extension theorem.
4.1. Lemma. Let G be an Abelian p'-group and suppose {x,.}f:l c G with
X, #X; Jor i # j. Then there exists ¢, € ®o(G) such thatif A, = ((oi(xj));'J=1 ,
then

(1 |detd,|=1  foralln, and
(2) A, =),y then b 1< 1 fori,j=1,..,n.
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Remark. This lemma can be compared to results on k-complete group algebras
(c.f. [11], 4.3.3).

Proof. The proof proceeds by induction on 7, the case n = 1 being trivial
(take ¢, = 1). Assume the result holds for n —1,s0 ¢,,...,9, , € ®Py(G)
have been found satisfying properties (1) and (2). Let u € ®4(G) and consider
the n x n matrix M(u) = (a;;) where

{ (pi(xj) ifi=1,...,n—-1, j=1,...,n
YU lux) ifi=n, j=1,..,n.
Expanding the determinant along the nth row we obtain detM(u) =
Y, u(x,)c,, where |¢| <1 for i=1,...,n-1 and ¢, = (-1)""'det4,_,.
By the induction assumption |[c,| = 1, thus by 3.5 there exists some
9, € Po(G) such that |37 c,¢,(x;)| = 1. Thus (1) is satisfied. Moreover
the cofactor formula for inverses makes it clear that |b,(.;')| <1 for i,j=
1, ...,n establishing (2).
4.2. Theorem. Let H be a normal subgroup of a group G and suppose G/H
is an Abelian p'-group. If f € J(I,(Q,G)) then [ = Y ;2 t,x, where t; €
J(,(Q,H)), x,€G and |t — 0.
Proof. Let f € J(/,(Q,G)) and suppose f =)o f with f, €/,(Q,G) and
supp f; C Hx; where {xi}j.’:l are distinct coset representatives of G/H . Let
n: G — G/H be the canonical quotient map. Apply 4.1 with the Abelian p'-
group being G/H and {x;n} the distinct elements of G/H, to obtain ¢, €
®,(G/H) with the corresponding properties (1) and (2). Extend each ¢, to
elements of ®,(G) by defining

9, lz agg] =Y a.p,(gn).

gEG g€eG
Define

#
of [Ya,e] =Y a0, (08
Then (p;‘ is an Q-automorphism of /,(Q,G). Notice that as supp fj C Hx;
[e o]
(*) o, (f) =Z¢i(xj)fj'
j=1

Let ¢ > 0 and choose N such that ||f || <& for n > N. Let
BN=((pi(xN+j)) where i=1,...,Nand j=1,2,....

From (x) we have the system of equations

yeee

Hence
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As J(/,(Q,G)) is invariant under Q-automorphisms, (pf( f) e J(L,(Q,G)).
Let
G it o = AN O i v

Then ij ) is a linear combination of qof( fsoens (o#N( f) and thus belongs to
the Jacobson radical for each integer N and i=1,...,N. Finally, let
(N) -1
(& Dicr..n=Ax By())jonii vea, -

Then f, = jEN)+s§N) . As all the entries of A;,] and B, have valuation at most

one, (by the lemma) and ||f,|| < & for all n > N, it follows that ||s,(.N)|| <e&
forall i =1,...,N. As ¢ > 0 was arbitrary we have that, for each i,
lim,_ ||j}N) —fl=0 and as J(/,(Q,G)) is closed (2.1(iii)) f; € J(/,(Q,G)).
Thus

fx e l(Q,6)nl(Q,H)CJ(1,(Q,H))

(c.f. the proof of 2.2) and f = E(fixi_')x,.. O

The next result is obvious.
4.3. Corollary. Suppose G, is an Abelian p'-group and G,€ X, . Then G, x
G,eX,. O

Let Sp, denote the class of solvable groups which have a subnormal series
with Abelian p’-factor groups. This class contains all solvable torsion groups
which have no elements of order p and all nilpotent p’-groups [2].
4.4. Theorem. Suppose H is a normal subgroup of G with H € X, and
G/HES, . Then G € X, .
Proof. Let

{1} =K, <K,< - <Ky=G/H
be a subnormal series for G/H with K, /K, a p’-Abelian group for each
i=1,...,N.Let n”'(K,) = G,. We have
H=G <G6,5---<G,=G

with G, ,/G, ~ K, /K, p'-Abelian groups, and as H € X an induction
argument together with Theorem 4.2 now completes the proof. O
4.5. Corollary. Let G € S, Then Ge X,. O
4.6. Corollary. Let G have a directed system {N.:i € I} such that each
G/N, €S, . Then G e X,.
Proof. Combine Theorem 2.3 and Corollary 4.5. O

4.7. Theorem. Let G have a directed system {N,: i€ I} such that each factor
group G/N, is polycyclic. Then G € X, .

Proof. As usual we may assume G itself is polycyclic, so G has a subnormal
series

G=G,>G,_

(22 Gy={1)
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with each G,/G,_, a finitely generated Abelian group. The proof proceeds by
inductionon n. If n = 1 the result is clear, as finitely generated Abelian groups
do not contain pr . So assume G,_, € X, .

Choose a subgroup L of G with G, > L > G,_,, G,;/L a torsion-free
Abelian group and L/G,_, a finite Abelian group. Let n: L — L/G,_, be the
usual quotient map and assume L/G,_| = {xin}f; 1 » X; € L, with x;z distinct.
By [11] 4.3.3 there exist homomorphisms ¢, , ... ,¢, € ®,(L/G,_,) such that

the NxN matrix (¢, (x jn))f‘f =1 is nonsingular. Using this result in place of 4.1,
arguments similar to those of the proof of 4.2, (but much easier as the matrix
B, is unnecessary) show that if f € J(/,(Q,L)) then f = Ef\;l t,x;, with

t, € J(,(Q,G,_))) = (0). Thus L € X,. As G,/L is an Abelian p'-group,

1

G, € X, (4.2). This completes the induction step and hence the proof. O

OPEN PROBLEMS

1. Is [, Q,, EBf’Cpoo) semisimple? If so then it can be proved that /, Q,.06)
is semisimple for any Abelian group G.

2. If G is a nilpotent group which does not contain a Cpoo subgroup, is
[,(Q,G) semisimple?

3. Is the class X, closed under direct products or (normal) subgroups?

4. If Ge€ X, and k is any complete extension field of Q, contained in
Q,is Ge X, ?
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