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Abstract. For a prime p let Si = Qp denote the completion of the algebraic

closure of the field of /?-adic numbers with p-adic valuation | • |. Given a

group G consider the ring of formal sums

h(Sl,G)= | Y^axX-axea,\ax\-*o\ .

Motivated by the study of group rings and the complex Banach algebras

l\ (C, C7) , we consider the problem of when this ring is semisimple (semiprimi-

tive). Our main result is that for an Abelian group G , /| (fi, G) is semisimple if

and only if G does not contain a Cpoo subgroup. We also prove that /[ (Q, G)

is semisimple if G is a nilpotent //-group, an ordered group, or a torsion-free

solvable group. We use a mixture of algebraic and analytic methods.

I. Introduction

Throughout p is a fixed prime, and all fields are contained in Q = Q ,

the completion of the algebraic closure of the field of /7-adic numbers Q ,

and contain Q . If Ä: is such a complete field denote by | • | : k —► R the

non-archimedean extension of the p-adic valuation on Q . Given a group G

consider the ring of formal sums

M* 'O = \Y.axx- <*xe * >KI - ol

where \ax\ —» 0 means that for every e > 0, only finitely many of the c*v satisfy

|qv| > e. We are interested in the problem of whether the ring, lx(k,G), is

semisimple (sometimes called semiprimitive) or not. Our main results are that

for Abelian groups G, lx(k,G) is semisimple if G does not contain a CM
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subgroup (§3), and that for a large class of solvable groups including all nilpotent

/z'-groups, lx(Q,G) is again semisimple (§4).

The algebra lx(Q ,G) was studied in [10]. They consider the question of

when lx (Q , G) is Noetherian, Artinian, or prime and ask when it is semiprime.

Our work was also motivated by the well-known result that the Banach algebra

over C

MG) = {£a^:a,eC,£K|<oc}
KxeG )

(here | • | denotes the usual absolute value on C) is always semisimple (cf. [8]

or [13]). In contrast it is known that /, (Í2, Cp0o) is not semisimple [4].

We conclude the paper with a list of some open problems.

II. General results

Define || • ||: lx(k,G) -* R as follows: if / = £axx e lx(k,G) then ||/|| =

suPxeG laxl • Also, write supp(/) - {x e G: ax ^ 0} . In the following lemma

we collect a number of (very easy to prove) properties of /,(k,G):

2.1. Lemma. Let k be a complete subfield of Q containing Q and let G be

a group. Then:

(i) If f e lx(k,G) then supp(/) is countable.
(ii)  Il/Il = max la J if f = Y1 ax, and we have:

xeG    x *

11/11 > 0 for all f, and ||/|| = 0 if and only if f = 0 ;
||/+g||<max{||/||,||g||} and\\f+g\\ = ||/|| if \\g\\ < ||/|| ;

\\fg\\ <\\f\\\\g\\-
In particular the topology defined by \\ • \\ turns /, (k, G) into an ul-

trametric topological ring which is complete.

(iii)  The maximal right (or left ideals) of /, (k, G) are closed.

(iv) Let <p : lx (k, G) —> Q be a k-algebra homomorphism.  Then <p is con-

tinuous if and only if \<p(f)\ < ||/|| for all f e lx(k ,G).
(v) Let tp: G —> Q be a k-algebra homomorphism where \f(x)\ = 1 for all

x e G. Then tp has a unique continuous extension to lx (k ,G).

Proof, (i) and (ii) are trivial. As for (iii), let M be a maximal right ideal of

/, (k ,G). Then its closure M is also a right ideal. If 1 G M then we can find

a sequence {fn} of elements of M with fn —► 1 . But if ||1 - /„|| < 1 then

/„ = 1 - ( 1 - /J is a unit (with inverse £^0( !-/,)'€ /, (k, G) since /, (k, G)

is complete). This is impossible, so 1 ^ M and so M = M.

(iv) Assume <p is continuous and suppose there exists x e G with \<p(x)\ /

1 . Choose a e k with 0 < |a| < 1 . Replacing x by a suitable power we may

assume that \<p(x)\ > a"  .  Consider the element / = X^o"'-*' € ¡\(k,G).

if /„ = e;UqV' then clearly 11/-/J - o. while \9(f„)-f(/»_,)l =
|a"ç>(x)"| —► oo, so the sequence {<p(fn)} is not convergent in Í2. This contra-
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diets the continuity of cp . Thus \<p(x)\ = 1 for all x e C7. Let / = ¿Zx€G axx e

lx(k,G). By continuity <p(f) = ¿Zax<P(x), thus \<p(f)\ < \\f\\. The other di-
rection is trivial.

(v) It is easy to check that the unique continuous extension is given by

<P(2Zaxx)=>Zax<P(x).   o

If R is a ring we write J(R) for the Jacobson radical of R . The following

result enables us to concentrate on countable groups:

2.2. Lemma. If k is a complete field and G is a group, then

J(lx(k,G))c\Jj(lx(k,H)),
H

where the union ranges over all countable subgroups 77 of G.

Proof. Let / e J(lx(k,G)) and let H = (supp(/)>. We claim that / 6

J(lx (k, 77)) .If ge /, (k, 77) then there exists f elx(k,G) with /( 1 - gf) =

1. Let 7 be a left transversal of 77 to G containing 1, and write f = J2 tft .

where ftelx(k,H). It follows from ^t€Tt/t(l-gf) = 1 that f[{\-gf) = 1 .
This is for all g e /, (k, 77), so / e J(lx (k, 77)), as required.   G

If zc is a field write Xk for the class of all groups C7 for which lx (k, G) is

semisimple. Not much is known about the class-theoretic properties of Xk . As

an example we have:

2.3. Theorem. Let k be a complete field, and let {Nx: X e A} be a directed

system of normal subgroups of G such that every G/Nx e Xk . Then G eXk .

Proof. Let 0 / / e lx(k, G), and write / = £/=1 a¡x¡ + g where |a;| = ||/||

for all i = 1, ... ,r and ||^|| < ||/||. By assumption there exists X e A with

x¡x~' £ Nx for \ < i £ j <r. The mapping 6:lx(k,G) -+ lx(k,G/Nx)

obtained by extending the natural homomorphism G —► G/N^ is easily seen

to be a well-defined surjective continuous ring homomorphism. Now 6(f) =

£a,.0(x;) + d(g), the elements d(x¡) are distinct, and \\d(g)\\ < \\g\\ < ||/||.

Thus 6(f) ¿ 0, and since J(lx(k,G/Nk)) = {0} this implies that / £

J(lx (k, G)), as required.   D

2.4. Corollary. If G is residually finite then GeXk for all k.

Proof. If N <, G then /, (k, G/N) is simply the group ring of G/N over k,

which is semisimple by Maschke's Theorem ([11], 2.4.2).   o

As another example we have

2.5. Theorem. Let k be complete, with k the residue class field of k . If the

group ring kG is semisimple and has no zero divisors then G e Xk .
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Proof. Suppose J = J(lx(k,G)) # 0, so it contains an element g with ||g|| =

1. Choose any / e lx(k,G) with ||/|| = 1. If ||1 - fg\\ < 1 then fg =
1 - ( 1 - fg) is invertible, which is impossible since g e J. Let u e lx(k,G)

be such that u(\ - fg) = 1 . We claim that ||zz|| = 1. First, note that

i = ||«(i-/g)||<H||i-/g|| = H|.
Now set

R = {yelx(k,G):\\y\\<l},

M = {yelx(k,G):\\y\\<l}.

Then M is an ideal of R and R/M = kG (for the coefficients of the elements

of R belong to the valuation ring of k, and the homomorphism onto k is

easily seen to extend to one of R onto kG with kernel M). Let n : R —* R/M

denote the canonical map. If ||w|| > 1 choose a e k with \a\ = ||zz||. Then

(a-1«)(l - fg) = a~ , and so (a~ u)n(\ - fg)n = a~\ = 0. But this is

impossible since \\a~ u\\ - ||1 - fg\\ = 1 and zcG has no zero divisors. Thus

| « || = 1. But then (zzzr)(l-/7r,g-7r) = 1, and since this is true for all f elx(k ,G)

it follows that gn e J(kG) = {0}, contradicting \\g\\ = 1.   D

2.6. Corollary. Let k be a complete field.

(i) If G is a u.p. group (e.g. an ordered group) then G e Xk .

(ii) If k is uncountable and kG has no zero divisors then G e Xk .

Proof. These are consequences of 2.5 and well-known facts about the group-

ring kG (cf. [11], 13.1.2, 13.1.9, 7.1.6) in view of the fact that u.p. groups

are t.u.p. groups [14].   o

2.7. Corollary. Let k be complete with residue class field k, and let G and

77 be nontrivial groups. If the group ring k(G x 77) has no zero divisors then

GxHeXk.

Proof. The assumptions imply that k(G x 77) is semisimple [9]. The result

follows from 2.5.   o

2.8. Corollary. Let k be complete with residue class field k. Suppose G isa

torsion-free solvable group. Then G e Xk .

Proof. In [7] it is shown that for such groups G , k(G) has no zero divisors. It

is well known that k(G) is semisimple (cf. [11] 7.4.6).    D

III. Abelian groups

For / e lx(k,G) let v(f) = Um^^\\f \\1/n (it is easy to see that v(f)

is well defined, [12] 6.22). Say / is topologically nilpotent if v(f) — 0. Our

aim is to show that for Abelian groups G, the Jacobson radical of ¡x(k,G)

is precisely the set of topological nilpotents in lx(k,G), as is the case for the
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complex algebra lx(G) [8]. We will write ®k(G) for the set of all continuous

k-algebra homomorphisms cp: lx(k,G) —> Í2 and write Q>'k(G) for the set of

tp € <&k(G) such that <p(lx(k, G)) is a field. We have:

3.1. Lemma. Let G be an Abelian group, with 77 a subgroup of G. Then

any element of Q>k(H) (respectively, <&'k(H)) can be extended to an element of

<bk(G) (respectively, ®'k(G)).

Proof. Apply Zorn's Lemma to the set of all triplets (Gx, q> ,E) where Gx 2 77

is a subgroup of G, q> e <t>k(Gx), (respectively, Q>'k(Gx)), and E =

(p(lx(k, G,)). It is routine to show that G belongs to a maximal element (cf.

[11] 1.2.7).   D

We need to introduce an auxiliary seminorm on /, (k, G) :   if / e /, (k, G)

let

\\f\\sp = sM\<P(f)\:<pe^'k(G)}.

We have the following result:

3.2. Lemma. Let k be a complete field, and let G be an Abelian group.

(a) v(f + g)<max{v(f), v(g)} for all f, gelx(k,G).

(b) v(f)<\\f\\forall felx(k,G).
(c) v is continuous.

(d) U/H,, <v(f)< p\\f\\sp for all felx(k,G).

Proof. For (a) see [12], 6.22. Part (b) is obvious. Part (c) follows easily from

(a) and (b). Consider (d). The inequality \\f\\sp < v(f) follows from \\f"\\sp <

||/" ||. To prove the second inequality, first consider the case when G is finitely

generated, and let X e k satisfy ||/||w < \X\. Then \cp(X~l f)\ = \X~l\\cp(f)\ <

W\\ft\sp < ! for a11 ?6*i. and so (X~lf)" -+ 0 as zz -+ co [15]. Thus for

all sufficiently large zz we have \\(X~ f)"\\ < 1, whence ||/"|| < 1^1- Thus

v(f) < \X\ whenever Xek satisfies ||/||jp < \X\. Since \k*\ D{/:neZ},

and in particular has 0 as an accumulation point, it follows that v(f) = 0 if

11/11    = 0.   It also follows that if ||/||    ^ 0 then there exists Xek, with

II/IU < |A| < P\\f\\sp , and hence v(f) < p\l
In the general case write / = lim^^ fn where each fn elx(k, G) has finite

support in G. Given e > 0 choose N large enough so that ||/- fN\\ < e, and

\v(fN) - v(f)\ < e. Choose yt e <t>'k(G) such that \y/(fN)\ > P~^v(fN) -e.
(The existence of >// follows from the first part of the argument applied to

(suppC/^)) and 3.1.) Thus

U/H,, > \w(f)\ > \¥{fN)\ - W(f-fN)\ >P~lv(fN)-e-\\(f-fN)\\

>p-'v(f)-p-'\v(fN)-v(f)\-2e>p-lv(f)-(2+p-l)e.

Since e is arbitrary, the result follows.   D
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The proof shows that when |zc*| is dense in the positive real numbers, then

we obtain v(f) < \\f\\sp , and so in fact v(f) = \\f\\sp .

We can now prove the following:

3.3. Theorem. Let k be a complete field, G an Abelian group, and f e

/, (k,G). Then the following are equivalent:

(a) feJ(lx(k,G)).

(b) <p(f) = 0forall <pe<*>'k(G).
(c) / is topologically nilpotent.

(d) cp(f) = 0 for all <pe<S>k(G).

Proof.

(a) => (b) is trivial, since ker <p is a maximal ideal of lx(k, G).

(b) => (c) follows from 3.2 since (b) implies that ||/||    = 0.

(c)=>(a): let gelx(k,G). Since \\(gf)\\l,n < \\g\\\\f\\1'" - 0 we have

\\(gf)"\\ - 0, so E7=0(gf)n elx(k,G). In other words 1 - gf is invertible,
whence f e J(lx(k,G)).

(c) => (d) : a continuous homomorphism must map topological nilpotents

to topological nilpotents, and the only topological nilpotent in a field is the zero

element.

(d) => (b) :   Obvioi's.   D

The following result is useful for dealing with extensions:

3.4. Lemma. Let G be Abelian, 77 a subgroup of G, and let k be a complete

field. Assume that 77 e Xk and G/H e XE for all complete extension fields

EDk. Then GeXk.

Proof. Let / = Execaxx e J(li(k>G)) ■ Let <P e ®[(H) - and let 6 e $'k(G)
be any extension of <p (such exist by 3.1). Put E — 6(lx(k ,G)), a subfield

of Q. Let x i-> x denote the natural map G —► G/77. If p e Oj(G/77),

where E is the completion of E, consider the map y: lx(k, G) —► Í2 defined

by y/(x) = 6(x)p(x) for all x e G, and extended by linearity and continuity to

the whole space. Since t// e ^k(G), i//(f) — 0 by 3.3. Put ßx = ax6(x) e E,

and y- = J2y=x ßy € 7. In view of the definition of y/ we have 0 = i//(f) =

2Zx€GIHyx^x) = p(J2xyxx). This is for all p e c%(G/77), and lx(E,G/H)

is semisimple by assumption, so by 3.3 again, y- = 0 for all x e G/H. But

y = x is equivalent to y e Hx so we have J2h€H ahx9(hx) - 0, where x e G

is fixed. Cancelling a factor of 8(x), and remembering that 6 is an extension

of <p , the above becomes (p(J2f,eh ahxn) = 0 ■ But tms is f°r au< <P e ®'k(H) >

so finally every ahx = 0 , as required.    D

We need one more preliminary result.

3.5. Lemma. Let G be an Abelian p'-group, and let k be a complete sub-

field of Q. Given distinct elements x,, ... ,xn of G and elements cx, ... ,cn
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of k, there exists a continuous k-homomorphism cp: lx(k,G) —► Q such that

W{\ZUclxl)\ = \\1Zlclxi\\.

Proof. Let / = J2cixr We may assume that ||/|| = 1 . If we can find a

continuous <p such that \(p(f)\ > 1 then the trivial fact \<p(f)\ < ||/|| suffices

to show that \cp(f)\ = 1 = 11/11.
The proof of \<p(f)\ > 1 proceeds by induction on n , the case n = 1 being

trivial (let <p(x) = 1 for all x e G). Assume the result is true for n -1 but false

for n. Thus there exist distinct elements xx, ... ,xn e G, and cx, ... ,cnek

with max( \c¡\ = 1 , such that \<p(f)\ < 1 for all tp e Öfc(G) (where / = X) c¡xt).

We may suppose \cn\ = 1. It is easy to see that if X ¿ 1 is a /z'-power root of

unity in Q then |1 - X\ = 1. Since xxxxn ■£ 1 we can find a /z'-power root of

unity X e Q, X ± 1, of the same order as xl~lxn. (If the order of xx~ xn is

infinite let X^ 1 beany /z'-power root of unity.) Define a continuous ^-algebra

homomorphism tp: lx(k, (x~xxn)) —► Q by cp(x~lxn) = X. Extend this to an

element (still denoted by tp) of Ofc(G). Then

-i
\cp(xx) - cp(xn)\ = \cp(xx)\\\ - cp(xx   xn)\ = 1 ,

and so max, \c¡((p(xx) - <p(x/))\ = 1 . By the inductive hypothesis there exists a

continuous homomorphism p: lx(k,G) —» Q such that

(*) Y,ci(tp(xx)-tp(xi))p(xi)
1=1

> 1.

The product homomorphism tpp (defined by <pp(J2axx) = J2ax<p(x)p(x)) is

also continuous, and so

Y^,ci(Pi<xi)p(xi)
1=1

< 1.

Since |çz(x.)| = 1 we also have

^cicp(xx)p(xi]
(=i

£c/M*,:
i=l

< 1

and thus

y^ci((p(xx)-(p(xi))p(xi)

(=1

< 1

This contradicts (*), and proves the result.   D

Our main result on Abelian groups is

3.6.   Theorem. Let k be a complete subfield of ilp , and let G be an Abelian

group with no C ^ subgroups. Then G e Xk .

Proof. We proceed via a series of steps.

Step 1. We may assume that G is a /z-group: If Gp denotes the maximal

/z-subgroup of G and 7 is a complete extension field of k , then we claim that
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G/Gp e XE. For if / t¿ 0 is an element of lx(E,G/Gp) then by 3.5 we can

find a continuous homomorphism tp e Q>E(G/G ) such that \<p(f)\ = ||/|| ^ 0,

so J(lx(E,G/Gp)) = {0} by 3.3. Thus if GpeXk, then G e Xk by 3.4. We
are now in the case where G is a countable (2.2) Abelian /z-group with no C

subgroup.

Step 2. If G has finite exponent pm then G e Xk : If G has exponent

p then it is a countable vector space over GF(p), and is therefore residually

finite. Thus G e Xk by 2.4. In general by induction on m we have G/G

and Gp""' e Xk (for all fields k), and so G e Xk by 3.4.

Step 3. If G has no element of infinite height then G e Xk : The assumption

is that rC=i GP — (1), so {Gp : zzz = 1,2, ...} is a directed system in G.

Each G/Gpm e Xk by Step 2, and so GeXk by 2.3.

We can now deal with countable reduced /z-groups G. Consider the Ulm

sequence of G ([6], §76): put G(1) = (X?=i Gp ; if a is not a limit ordinal put

Ga+l = (G(a)f\ and if A is a limit ordinal put Gw = Ç\a<xG(a). Since G

is reduced we have G = (1) for some ordinal t. We prove, by transfinite

induction on a, that G/G e Xk for all a. For a — 1 the group G/G

has no elements of infinite height and so G/G e Xk by Step 3. If a is not

a limit ordinal then G(a~l)/G(a) e Xk by Step 3, and G/G{ff_1) e XE (for all

complete 7) by induction, so G/G ' e Xk by 3.4. If a is limit ordinal then

{G(p)/G(a) : p<a} is a directed system in G/G(a), and since each G/G(p) e Xk

by induction, we have G/G e Xk by 2.3. This establishes the inductive step.

In particular G = G/Gw e Xk , as required.   D

In general lx(k ,C <*,) is semisimple if and only if k does not contain in-

finitely many /zth-power roots of unity ([4]; see also [1], [5]). In fact, if k*

contains a C x subgroup then lx(k, Cp00) even contains nonzero nilpotent el-

ements. Thus no improvement to 3.6 without imposing additional restrictions

on the field zc is possible and the following corollary is obvious:

3.7. Corollary. If G is an Abelian group, then /,(fi,G) is semisimple if and

only if G does not contain a C „ subgroup.

IV. Solvable groups

To obtain results for solvable groups we need another extension theorem.

4.1. Lemma. Let G be an Abelian p-group and suppose {x;}^1 c G with

x¡ t¿ x for i ^ j. Then there exists cpi e 0>Q(G) such that if ' An - (^'(JC-))* =I,

then

(1) \de\An\ = l      for all n, and

(2) if A; ' = {b¡f)¡ J=,, then \b\f\<l   for ij =1, ... , zz.
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Remark. This lemma can be compared to results on zc-complete group algebras

(cf. [11], 4.3.3).

Proof. The proof proceeds by induction on zz, the case n = 1 being trivial

(take cpx = 1). Assume the result holds for n - 1 , so <px, ... ,cpn_x e <Pa(G)

have been found satisfying properties (1) and (2). Let p e 4>n(G) and consider

the zz x zz matrix M(p) = (a. ) where

f » (x)   if z'= 1, ...,«-1,    j=\,...,n
a   = {        J

,J      V p(Xj)    if i = n,    j = 1, ... ,n.

Expanding the determinant along the zzth row we obtain detM(p) =

]£"=1 p(xi)ci, where |c;| < 1 for i - 1, ... , zz - 1 and cn = (-1)"-1 det^n_, .

By the induction assumption \cn\ = 1, thus by 3.5 there exists some

cpn e <bçi(G) such that \Yl"=ici<Pn(xi)\ = 1- Thus (1) is satisfied. Moreover

the cofactor formula for inverses makes it clear that \b" \ < 1 for i,j —

\, ... ,n establishing (2).

4.2. Theorem. Let H be a normal subgroup of a group G and suppose G/H

is an Abelian p-group. If f e /(/, (Q,G)) then f = £*, t¡x¡ where t¡ e

J(lx(il,H)), x(eG and \\t¡\\^0.

Proof. Let f e J (I X(Q., G)) and suppose / = £~ /. with / e /,(Q,G) and
supp/ ç 77x. where {x)}^1 are distinct coset representatives of G/77. Let

n : G —► G/77 be the canonical quotient map. Apply 4.1 with the Abelian p -

group being G/77 and {x(zr} the distinct elements of G/77, to obtain q>¡ e

<I>n(G/77) with the corresponding properties (1) and (2). Extend each cpi to

elements of On(G) by defining

9i ¿2agg
\geG

Define

5>, ?»,■(**) ■
geG

Then <p* is an Q-automorphism of lx(Çl,G). Notice that as supp/ c 77x

oo

(*) ?;(/) = £?,(*,)/;.

Let e > 0 and choose N such that ||/J| < e for n > N. Let

BN = (<Pj{xN+J))       where i = I, ... ,N and j = 1,2, ... .

From (*) we have the system of equations

\<P i U)) , = i ,... ,N = ^Vv/)|=1.AT + °A?Vj)j=A'+l,Af+2,... •

Hence

(//)/-!.N+ANlBN(fi)i=N+l,N+2,...=ANl(<P*(f))i=U...,N'
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As /(/,(£!,G)) is invariant under Q-automorphisms, <p*(f) e 7(/,(Q,G)).

Let

U\N))l=[.N = ¿Ñ[(<P#i(f))l=l.AT

Then jj ' is a linear combination of <p*(f), ... ,<p#N(f) and thus belongs to

the Jacobson radical for each integer N and z = 1, ... , yV. Finally, let

(£;     )f=l.N = AN BN\Jjlj=N+\ ,N+2,... '

Then f. = j\ +e\ .As all the entries of A~N and BN have valuation at most

one, (by the lemma) and \\fn\\ < e for all n > N, it follows that ||e)W)|| < e

for all z = 1, ... , jV . As e > 0 was arbitrary we have that, for each i,

lim^JL/f»-/,. || = 0 andas 7(/,(Q,G)) is closed (2.1 (iii)) /. e J(lx(£l,G)).
Thus

fx~l eJ(lx(Ci,G))nlx(ci,H)çj(lx(Q,H))

(cf. the proof of 2.2) and / = ¿Z,(f¡x~ )x¡.   □

The next result is obvious.

4.3. Corollary. Suppose G, is an Abelian p -group and G2eXQ. Then G, x

G2eXçl.   u

Let S , denote the class of solvable groups which have a subnormal series

with Abelian /z'-factor groups. This class contains all solvable torsion groups

which have no elements of order p and all nilpotent /z'-groups [2].

4.4. Theorem. Suppose 77 is a normal subgroup of G with 77 e Xn and

G/HeSpl. Then GeXQ.

Proof. Let

{1} = *, <K2<      <KN = G/H

be a subnormal series for G/77 with K¡+x/K¡  a /z'-Abelian group for each

z = 1, ... , N. Let k"1^.) = G,. We have

77 = G, < G2 < • •   < Gn = G

with Gl+X/Gj ~ K¡+x/K¡ /z'-Abelian groups, and as 77 e XQ an induction

argument together with Theorem 4.2 now completes the proof.     D

4.5. Corollary. Let G e Spl . Then G e XQ .    D

4.6. Corollary. Let G have a directed system {N¡: i e 7} such that each

G/N¡ e Sp,. Then GeXQ.

Proof. Combine Theorem 2.3 and Corollary 4.5.   D

4.7. Theorem. Let G have a directed system {N.: i e 7} such that each factor

group G/N¡ is polycyclic. Then G e XQ.

Proof. As usual we may assume G itself is polycyclic, so G has a subnormal

series

G = G„>G„_1>..>G0 = {1}
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with each GJGj_x a finitely generated Abelian group. The proof proceeds by

induction on zz. If zz = 1 the result is clear, as finitely generated Abelian groups

do not contain Cp00 . So assume Gj_x e Xn .

Choose a subgroup 7 of G with G( > 7 > G-, ,  GJL a torsion-free

Abelian group and 7/G/1 a finite Abelian group. Let n: 7 —> L/Gi_x be the

usual quotient map and assume L/Gi_x — {xlii)i=x , x- 6 7, with xji distinct.

By [11] 4.3.3 there exist homomorphisms cpx, ... ,<pN e ^(7/G^,) such that

the NxN matrix (<p¡(xjn))l. =1 is nonsingular. Using this result in place of 4.1,

arguments similar to those of the proof of 4.2, (but much easier as the matrix

BN is unnecessary) show that if / e J(lx(Q,L)) then / = £/=] t¡x¡ with

ti e /(/[(Q.G^!)) = (0). Thus L e Xn. As GJL is an Abelian /z'-group,
G¡ e XQ (4.2). This completes the induction step and hence the proof,   o

Open problems

1. Is /,(Q ,®f Cp00) semisimple? If so then it can be proved that lx(Qp,G)

is semisimple for any Abelian group G.

2. If G is a nilpotent group which does not contain a C «, subgroup, is

/,(fi,G) semisimple?

3. Is the class Xk closed under direct products or (normal) subgroups?

4. If G e Xn and zc is any complete extension field of Q   contained in

Q, is GeXk?
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