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A NOTE ON THE QUATERNION GROUP AS GALOIS GROUP

ROGER WARE

(Communicated by Louis J. Ratliff, Jr.)

Abstract. The occurrence of the quaternion group as a Galois group over cer-

tain fields is investigated. A theorem of Witt on quaternionic Galois extensions

plays a key role.

In [9, §6] Witt proved a theorem characterizing quaternionic Galois exten-

sions. Namely, he showed that if F is a field of characteristic not 2 then an

extension L = F(y/ä,y/b), a,b e F, of degree 4 over F can be embedded

in a Galois extension A" of 7 with Gal(K/F) = 77g  (the quaternion group
7 7 7

of order 8) if and only if the quadratic form ax  + by  + abz   is isomorphic
2 2 2

to x + y + z .In addition he showed how to explicitly construct the Galois

extension from the isometry. An immediate and interesting consequence of this

is the fact that 77g cannot be a Galois group over any Pythagorean field.

In this note Witt's theorem is used to obtain additional results about the

existence of 77g as a Galois group over certain fields. If 7 is a field (of char-

acteristic not 2) with at most one (total) ordering such that 77g does not oc-

cur as a Galois group over F then the structure of the pro-2-Galois groups

GF(2) = Gal(7(2)/7), Gpy = Gal(7py/7) (where 7(2) and Fpy are the

quadratic and Pythagorean closures of F) are completely determined. More-

over it is shown that for any field F of characteristic not two, 77g occurs as a

Galois group over F iff 77g is a homomorphic image of G iff the dihedral

group 7)g of order 8 is a homomorphic image of G   .

In what follows all fields have characteristic different from 2. If ax, ... , an 6

F = F\{0} then q = (ax, ... ,a ) denotes the quadratic form with orthogonal

basis ex, ... ,en and q(e¡) = a¡. The value set of q is D(q) = {a 6 F\q(x) = a

for some x}. Any unexplained notations and terminology about quadratic

forms can be found in [4].
7 • 7

Lemma 1. For a field F with -\ £ F and \F/F \ > 2 the following are

equivalent:

(1) The level (stufe), s (F), of F is two.
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(2) Every quadratic extension of F can be embedded in a quaternionic Ga-

lois extension.

(3) 7(\/-T) is contained in a quaternionic Galois extension.

Proof. (1) => (2). Let a e F, a £ 72 U-72 . By (1), (1,1,1) = (-1,

- 1,1) = {-I,a, - a). Hence by Witt's theorem [9, §6], F(^T:\,y/a) is

contained in a quaternionic extension.

(3) -»■ (1). By Witt's theorem, there exists a e F such that (1,1,1) =

(-1 ,a, - a). Hence (1,1,1) is isotropic and s(F) = 2  (as - 1 ^ F ).

* 2 * 7 '2*2
An element a in 7 is rigid if a ^ F u -7   and D((\ ,a)) = F liaF  .

Lemma 2. For a e D((\, I)), a $. F , the following are equivalent:

( 1 ) a is not rigid

(2) F(sfa) can be embedded in a quaternionic Galois extension.

2 2
Proof. (1) => (2). As a is not rigid, there exists b $. F LiaF such that

(1 ,a) = (b,ab). Hence (1,1,1) = (1 ,a,a) = (b,ab,a) and [9, §6] applies.

(2) => ( 1 ). By [9, §6] there exists beF\(F2uaF2) such that (a,b,ab) =

(1,1,1) = (a,a, 1) and by Witt's cancellation (b,ab) = (1 ,a). Hence a is

not rigid.

Remark. There exist fields with s(F) = 2 such that all elements not in 72U-7

are rigid (e.g.   F = F3((í,)) ...((*„))) • Of course, for such fields 1>((1,1» =

72U-72 [7, Corollary 1.2].

Let WF denote the Witt ring of anisotropic quadratic forms over 7 and

let GF(2) = Gal(7(2)/7), where 7(2) is the maximal 2-extension of 7 . The

next theorem improves Theorem 3.5 in [7]:

• 2
Theorem 1. For a field with \F/F \ >2 the following are equivalent:

(1) WF = Z/2Z[F/F2]
(2) GF(2) has (topological) generators {y¿,x}¡e¡ with relations y ¡y. — y ¡y ¡

and either xytx~x = y¡ for fixed m = 2"(n > 0) and all i € 7 or xy¡ — y¡x

for all i.
(3) The dihedral group Dg of order 8 does not occur as a Galois group over

F.

(4) F is not formally real and the quaternion group 77g does not occur as a

Galois group over F.

Proof. The equivalence of (1) and (3) as well as the implication (3) =>■ (4) is

contained in [7, Th. 3.5].

(1) => (2). If all 2-power roots of unity lie in 7 then by [7, Cor. 3.9(2)]

GF(2) has generators and relations as described with xy¡ = y¡x for all i e I.

Now assume 7 does not contain all 2-power roots of unity. By [3, Ths. 2.1,2.3,
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and Lemma 4. l(i)], GF(2) has the described generators and relations where n >

0 is the largest integer such that 7 contains a primitive 2n+ th root of unity.

(2) =>■ (3). As 7)g is a 2-group, 7)g occurs as a Galois group over 7 iff Dg

is a homomorphic image of GF(2). However, a pro-2-group with generators

and relations described in (2) cannot have 7)g as a homomorphic image.

(4) =>• (1).   Assume (4).   From Lemma 2 it follows that any sum of two
2 2

squares in 7 \ (7 u -7 ) is rigid and hence a sum of three squares in 7 can

be written as the sum of two squares. Inductively it follows that 7 = 7)((1,1)).
2 2

Hence by Lemma 2 all elements in 7 \ (7 u -7 ) are rigid and by Lemma 1,

-1 e 7  . Statement (1) now follows from [7, Th. 1.5].

Corollary. Assume F is not formally real. Then 7)g occurs as a Galois group

over F if and only if 77g occurs over F.

Remark. If G is a pro-2-group with generators and relations as described in

Theorem 1 (2) there is a field 7 with GF(2) = G. This can be seen as follows:

If G is not abelian let F = Z( (direct sum), let K be a 2-extension of

Q(en+2) maximal with respect to the exclusion of en+3, where ek is a primitive

2 th root of unity, and let 7 = K((T)) be the generalized henselian power series

field. If G is abelian (with basis {y¡}¡€1) take F = C((T)). Then (in either

case) GF(2) = G by [3, Th. 2.4].

Now let 7 be formally real, let F denote the Pythagorean closure of 7,

and let G = Gal(7 /7) denote the corresponding pro-2-Galois group. In [5],

Minac showed that if 7)g is not a homomorphic image of G then neither

is 77g. His argument used an equivalent form of Witt's theorem [2, 7.7 (ii)]

(compare [6, Example, 663-664]) and improved Theorem 3.9 in [8] (answering

a question raised in [8]). It should be pointed out that there is an oversight in

the statement of [8, Theorem 3.9]; namely, the statement should include the

assumption that 7 is formally real (the observation on lines 2-3 of page 104

of [8] is false if 7 is nonreal of level 2). The next theorem improves Minac's

theorem.

Theorem 2 (cf. [5, Th. 2], [8, Th. 3.9]). For a formally real field the following

are equivalent:

(1) If t € F\F   is a sum of squares then t is rigid.

(2) 7J)g is not a homomorphic image of G   .

(3) 77g does not occur as a Galois group over F.

(4) 77g is not a homomorphic image of G   .

Proof The equivalence of ( 1 ) and (2) is contained in [8, Th. 3.9] while the equiv-

alence of (1) and (3) follows from Lemma 2. It remains to prove (4) =*■ (3) :

Assume there exists a Galois extension K/F such that Gal(A^/7) = 77g.

Then there exist a, b in 7, independent mod squares, such that F(s/a~,\fb) ç

K. By [9, §6] (a,b,ab) = (1,1,1). Hence F(sja~,\/b) ç 7    so there is an
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epimorphism /: G   —► V = Ga\(F(s/ä,\fb)/F) and a diagrampy

F
1 -» Z/2Z -» 77g A K -> 1

with exact row. Let e e H2(V,Z/2Z) correspond to the above row. It is

well known that there is a surjective homomorphism /: G    -* 77g such that

hoi- = f if and only if f*(e) = 0 where /*: H2(V ,Z/2Z) -» 772(C7py,Z/2Z)

is induced by / (cf., [2, §7], [6, §3]).

Let Gf be the absolute Galois group of 7, let 5 : GF —► G be the nat-

ural surjection, and let g = fos. Then if g: GF —> Gal(AT/7) = 77g is

the natural map, we have g = hog. Hence g*(e) — 0 in 77 (GF,Z/2Z).

By [8, Cor. 2.2], H2(Gpy,Z/2Z) -» Br(Fpy/F) ç Br(F) is injective, whence

5*: H2(Gpy,Z/2Z) -♦ H2(GF,Z/2Z) = Br2(F) is injective. As £* = s* o/*

we conclude that /*(e) = 0. Hence 77g is a homomorphic image of G ,

completing the proof of Theorem 2.

An extension K/F is called totally positive if every ordering (if any) on 7

extends to an ordering on K .

Corollary. For a field F the following are equivalent:

( 1 ) 77g occurs as a Galois group over F.

(2) There is a totally positive Galois extension K/F such that Gs\(K/F) =

77g.

(3) There is a totally positive Galois extension L/F such that Gal(L/7) =

Z>„.

Proof. It is well known that a 2-extension K/F is totally positive iff K C F   .

Theorem 3. For a uniquely ordered field F with positive cone P the following

are equivalent:

( 1 )  WF s Z x Z/2Z[P/F2], the fibre product over Z/2Z (= product in the

category of Witt rings).

(2) GF(2) = Z/2Z * G     (free pro- 2-product) and G     has (topological)
_i cm

generators {y¡,x}¡e¡ with relations y¡y¡ — y¡y¡ and either xy¡x = y¡ for

fixed m — 2"   (n > 0) and for all i e I or xyi = y¡x for all i.

(3) G    has generators and relations as described in (2).

(4) 77g does not occur as a Galois group over F .

Proof. (1) => (2). By [1], Realization Theorem 4.8 and Remarks 4.9(i) there

exist 2-extensions K,  L of 7  such that   WK = Z,   WL = Z/2Z[P/F2],
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and the inclusions 7 ç K ,L induce the isomorphisms WF —► WK x WL =

Z x Z/2Z[P/72]. By [3, Th. 3.4], GF(2) = GK(2) * GL(2) = Z/2Z*GL(2) and

by Theorem 1, GL(2) has the generators and relations described in (2).

Let 7;7 denote the torsion subgroup of the fundamental ideal 77 of WF.

As WF = Zx WL the inclusion 7 ç L induces an isomorphism 7(7 —> IL =

ItL whence by [8, Th. 2.10], Gpy s GL(2).

(3) => (4). A pro-2-group with generators and relations as described in (2)

cannot have 77g as a homomorphic image. By Theorem 2, 77g does not occur

as a Galois group over 7 .

(4) => (1). As 7 is uniquely ordered, P is the set of nonzero sums of

squares and (F: P) = 2. Hence the mapping Z[P/F2] —> WF via J2 n¡[t¡] —>

J2n¡(t¡) is surjective and by Theorem 2 (1), its kernel is additively generated

by the elements 2[t] - 2[u], t, u e P. On the other hand, Z[P/72] -.Zx

Z/2Z[P/F2] via £»/['/] - (E"z> £«,.[!,•]) is surjective and £»,[*,] lies

in the kernel iff all «; are even and £«, = 0. This happens iff £/I/[iJ =

£2([m,]-£î>/J), proving (1).

Remark. If G is a pro-2-group with generators and relations described in The-

orem 3 (2) then by the remark following Theorem 1 and [8, Th. 4.1] there is a

uniquely ordered field 7 with G   = G.
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