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ABSTRACT. The occurrence of the quaternion group as a Galois group over cer-
tain fields is investigated. A theorem of Witt on quaternionic Galois extensions
plays a key role.

In [9, §6] Witt proved a theorem characterizing quaternionic Galois exten-
sions. Namely, he showed that if F is a field of characteristic not 2 then an
extension L = F(/a,vb), a,b € F, of degree 4 over F can be embedded
in a Galois extension K of F with Gal(K/F) = H; (the quaternion group
of order 8) if and only if the quadratic form ax’ + by2 +abz’ is isomorphic
to x>+ y2 + z?. In addition he showed how to explicitly construct the Galois
extension from the isometry. An immediate and interesting consequence of this
is the fact that H; cannot be a Galois group over any Pythagorean field.

In this note Witt’s theorem is used to obtain additional results about the
existence of H, as a Galois group over certain fields. If F is a field (of char-
acteristic not 2) with at most one (total) ordering such that H; does not oc-
cur as a Galois group over F then the structure of the pro-2-Galois groups
Gp(2) = Gal(F(2)/F), pr = Gal(pr/F) (where F(2) and F, are the
quadratic and pythagorean closures of F) are completely determined. More-
over it is shown that for any field F of characteristic not two, H; occurs as a
Galois group over F iff Hy is a homomorphic image of pr iff the dihedral
group D; of order 8 is a homomorphic image of pr.

In what follows all fields have characteristic different from 2. If @, ... ,q, €
F = F\{0} then g = (a,,...,a,) denotes the quadratic form with orthogonal
basis e,, ... ,e, and g(e,) = a;. The value setof g is D(q) ={a € Flg(x)=a
for some x}. Any unexplained notations and terminology about quadratic
forms can be found in [4].

Lemma 1. For a field F with —1 ¢ F’ and |F/F*| > 2 the following are
equivalent:

(1) The level (stufe), s(F), of F is two.
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(2) Every quadratic extension of F can be embedded in a quaternionic Ga-
lois extension.
(3) F(v/—1) is contained in a quaternionic Galois extension.

Proof. (1) = (2). Let a € F, a ¢ F*U—F>. By (1), (1,1,1) = (-1,
—1,1) = (=1,a, —a). Hence by Witt’s theorem [9, §6], F(v/—1,/a) is
contained in a quaternionic extension.

(3) — (1). By Witt’s theorem, there exists a € F such that (1,1,1) =
(-1,a, —a). Hence (1,1,1) isisotropic and s(F)=2 (as—-1 ¢ F2).

An element a in F is rigid if a ¢ F>U—F? and D((1,a)) = F*UaF”.

Lemma 2. For ac€ D((1,1)), a ¢ FZ, the following are equivalent:

(1) a is not rigid
(2) F(y/a) can be embedded in a quaternionic Galois extension.

Proof. (1) = (2). As a is not rigid, there exists b ¢ F 2 UaF? such that
(1,a) = (b,ab). Hence (1,1,1)=(1,a,a) = (b,ab,a) and [9, §6] applies.

(2) = (1). By [9, §6] there exists b € F\ (F2UaF?) such that (a,b,ab) =
(1,1,1) = (a,a,1) and by Witt’s cancellation (b,ab) = (1,a). Hence a is
not rigid.

Remark. There exist fields with s(F) = 2 such that all elements notin F 2U-F?
are rigid (e.g. F = F;((¢)))...((¢,))). Of course, for such fields D((1,1)) =

F*U—F?* [7, Corollary 1.2].

n

Let WF denote the Witt ring of anisotropic quadratic forms over F and
let G.(2) = Gal(F(2)/F), where F(2) is the maximal 2-extension of F. The
next theorem improves Theorem 3.5 in [7]:

Theorem 1. For a field with |F|F 2| > 2 the following are equivalent:

(1) WF = Z/2Z[F|F?]

(2) Gg(2) has (topological) generators {y,,x},., with relations VYV, =YV
and either xyix‘l = yf'm for fixed m =2"(n>0) and all i €I or Xy, =y
forall i.

(3) The dihedral group Dy of order 8 does not occur as a Galois group over
F.

(4) F is not formally real and the quaternion group Hg does not occur as a
Galois group over F .

Proof. The equivalence of (1) and (3) as well as the implication (3) = (4) is
contained in [7, Th. 3.5].

(1) = (2). If all 2-power roots of unity lie in F then by [7, Cor. 3.9(2)]
G.(2) has generators and relations as described with xy, = y,x forall ie 1.
Now assume F does not contain all 2-power roots of unity. By [3, Ths. 2.1, 2.3,
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and Lemma 4.1(i)], G(2) has the described generators and relations where n >
0 is the largest integer such that F contains a primitive 2""%th root of unity.

(2) = (3). As Dy isa 2-group, Dy occurs as a Galois group over F iff Dy
is a homomorphic image of G.(2). However, a pro-2-group with generators
and relations described in (2) cannot have D; as a homomorphic image.

(4) = (1). Assume (4). From Lemma 2 it follows that any sum of two
squares in F \ (F 2U-F 2) is rigid and hence a sum of three squares in F can
be written as the sum of two squares. Inductively it follows that £ = D({1,1)).
Hence by Lemma 2 all elements in F \ (F u-F? ) are rigid and by Lemma 1,
—1€ F*. Statement (1) now follows from [7, Th. 1.5].

Corollary. Assume F is not formally real. Then Dy occurs as a Galois group
over F if and only if Hy occurs over F .

Remark. If G is a pro-2-group with generators and relations as described in
Theorem 1 (2) there is a field F with G(2) = G. This can be seen as follows:

If G is not abelian let T' = Z" (direct sum), let K be a 2-extension of

Q(e,,,,) maximal with respect to the exclusion of e,_,, where e, is a primitive

2*th root of unity, and let F = K((I')) be the generalized henselian power series
field. If G is abelian (with basis {y},,) take F = C((I')). Then (in either
case) G(2) =G by [3, Th. 2.4].

Now let F be formally real, let pr denote the pythagorean closure of F,
and let pr = Gal(pr /F) denote the corresponding pro-2-Galois group. In [5],
Mina¢ showed that if Dg is not a homomorphic image of pr then neither
is Hg. His argument used an equivalent form of Witt’s theorem [2, 7.7 (ii)]
(compare [6, Example, 663-664]) and improved Theorem 3.9 in [8] (answering
a question raised in [8]). It should be pointed out that there is an oversight in
the statement of [8, Theorem 3.9]; namely, the statement should include the
assumption that F is formally real (the observation on lines 2-3 of page 104
of [8] is false if F is nonreal of level 2). The next theorem improves Minac’s
theorem.

Theorem 2 (cf. [5, Th. 2], [8, Th. 3.9]). For a formally real field the following
are equivalent:

(1) Ifte F\F 2 is a sum of squares then t is rigid.

(2) Dy is not a homomorphic image of G, .

(3) Hy does not occur as a Galois group over F .

(4) Hy is not a homomorphic image of G, .

Proof The equivalence of (1) and (2) is contained in [8, Th. 3.9] while the equiv-
alence of (1) and (3) follows from Lemma 2. It remains to prove (4) = (3):
Assume there exists a Galois extension K/F such that Gal(K/F) = H,.
Then there exist a,b in F, independent mod squares, such that F(y/a,vb) C
K. By[9, §6] (a,b,ab) =(1,1,1). Hence F(va,vb) C F,, so there is an
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epimorphism f: G — V = Gal(F(Va, vb)/F) and a diagram

G

py

I

1 -Z2Z—H, L v -1

with exact row. Let e € H’ (V,Z/2Z) correspond to the above row. It is
well known that there is a surjective homomorphism f: G,, — Hy such that
hof = f ifand only if f*(e)=0 where f*: H*(V ,Z/2Z) — H*(G.,,Z/2Z)
is induced by f (cf., [2, §7], [6, §3]).

Let G, be the absolute Galois group of F, let s: G, — pr be the nat-
ural surjection, and let g = fos. Then if g: G, — Gal(K/F) = H; is
the natural map, we have g = hog. Hence g*(¢) = 0 in Hz(GF,Z/ZZ).
By [8, Cor. 2.2], Hz(pr,Z/ZZ) — Br(pr/F) C Br(F) is injective, whence

HY(G,,.2/2Z) — H*(G,,Z/2Z) = Br(F) is injective. As g* =s"o f*
we conclude that f“(e) = 0. Hence Hg is a homomorphic image of pr,
completing the proof of Theorem 2. _

An extension K/F is called totally positive if every ordering (if any) on F
extends to an ordering on K.

py’

Corollary. For a field F the following are equivalent:

(1) Hg occurs as a Galois group over F .
(2) There is a totally positive Galois extension K/F such that Gal(K/F) =
H
s
(3) There is a totally positive Galois extension L/F such that Gal(L/F) =
D
s -

Proof. Tt is well known that a 2-extension K/F is totally positive iff K C F, .

Theorem 3. For a uniquely ordered field F with positive cone P the following
are equivalent:

(1) WF =ZxZ/2Z[P/F 2], the fibre product over Z/2Z (= product in the
category of Witt rings).

(2) Gp(2) = Z/2Z * G, (free pro-2-product) and G, has (topological)
generators {y,,x},., with relations VY, =YY and either xy,x_' = y,.m for
fixed m=2" (n>0) and forall i€l or xy,=yx forall i.

(3) G, has generators and relations as described in (2).

(4) Hy does not occur as a Galois group over F .

Proof. (1) = (2). By [1], Realization Theorem 4.8 and Remarks 4.9(i) there
exist 2-extensions K, L of F such that WK = Z, WL = Z/2Z[P/F’],
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and the inclusions F C K, L induce the isomorphisms WF 5 WK x WL =
Z x Z/2Z[P/F2]. By [3, Th. 3.4], G.(2) = G(2)*G,(2) = Z/2Z+G,(2) and
by Theorem 1, G,(2) has the generators and relations described in (2).

Let I F denote the torsion subgroup of the fundamental ideal /F of WF .
As WF =Zx WL the inclusion F C L induces an isomorphism [, F — IL =
I,L whence by [8, Th. 2.10], pr =G,(2).

(3) = (4). A pro-2-group with generators and relations as described in (2)
cannot have Hg as a homomorphic image. By Theorem 2, H; does not occur
as a Galois group over F .

(4) = (1). As F is uniquely ordered, P is the set of nonzero sums of
squares and (F: P) = 2. Hence the mapping Z[P/F*] —» WF via ¥ n,ft,] —
>_n;{t,) is surjective and by Theorem 2 (1), its kernel is additively generated
by the elements 2[¢] — 2[u], ¢, u € P. On the other hand, Z[P/F*] — Z x
Z/ZZ[P/FZ] via Y n[t] — (3on;, 2°m,[t]) is surjective and ) n[z] lies
in the kernel iff all n;, are even and ) n, = 0. This happens iff } n[t;] =
> 2([u,] - [v,]), proving (1).

Remark. If G is a pro-2-group with generators and relations described in The-
orem 3 (2) then by the remark following Theorem 1 and [8, Th. 4.1] there is a
uniquely ordered field F with pr =G.
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