A NOTE ON THE QUATERNION GROUP AS GALOIS GROUP

ROGER WARE

(Communicated by Louis J. Ratliff, Jr.)

ABSTRACT. The occurrence of the quaternion group as a Galois group over certain fields is investigated. A theorem of Witt on quaternionic Galois extensions plays a key role.

In [9, §6] Witt proved a theorem characterizing quaternionic Galois extensions. Namely, he showed that if F is a field of characteristic not 2 then an extension $L = F(\sqrt{a}, \sqrt{b})$, $a, b \in F$, of degree 4 over F can be embedded in a Galois extension K of F with $\operatorname{Gal}(K/F) \cong H_8$ (the quaternion group of order 8) if and only if the quadratic form $ax^2 + by^2 + abz^2$ is isomorphic to $x^2 + y^2 + z^2$. In addition he showed how to explicitly construct the Galois extension from the isometry. An immediate and interesting consequence of this is the fact that H_8 cannot be a Galois group over any Pythagorean field.

In this note Witt's theorem is used to obtain additional results about the existence of H_8 as a Galois group over certain fields. If F is a field (of characteristic not 2) with at most one (total) ordering such that H_8 does not occur as a Galois group over F then the structure of the pro-2-Galois groups $G_F(2) = \operatorname{Gal}(F(2)/F)$, $G_{\mathrm{py}} = \operatorname{Gal}(F_{\mathrm{py}}/F)$ (where F(2) and F_{py} are the quadratic and pythagorean closures of F) are completely determined. Moreover it is shown that for any field F of characteristic not two, H_8 occurs as a Galois group over F iff H_8 is a homomorphic image of G_{py} iff the dihedral group D_8 of order 8 is a homomorphic image of G_{py} .

In what follows all fields have characteristic different from 2. If $a_1, \ldots, a_n \in \dot{F} = F \setminus \{0\}$ then $q = \langle a_1, \ldots, a_n \rangle$ denotes the quadratic form with orthogonal basis e_1, \ldots, e_n and $q(e_i) = a_i$. The value set of q is $D(q) = \{a \in \dot{F} | q(x) = a \text{ for some } x\}$. Any unexplained notations and terminology about quadratic forms can be found in [4].

Lemma 1. For a field F with $-1 \notin F^2$ and $|\dot{F}/\dot{F}^2| > 2$ the following are equivalent:

(1) The level (stufe), s(F), of F is two.

Received by the editors March 24, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 11E81, 12F10; Secondary, 12D15.

Supported in part by NSA research grant No. MDA 904-88-H-2018.

622 ROGER WARE

- (2) Every quadratic extension of F can be embedded in a quaternionic Galois extension.
- (3) $F(\sqrt{-1})$ is contained in a quaternionic Galois extension.
- *Proof.* (1) \Rightarrow (2). Let $a \in F$, $a \notin F^2 \cup -F^2$. By (1), $\langle 1, 1, 1 \rangle \cong \langle -1, -1, 1 \rangle \cong \langle -1, a, -a \rangle$. Hence by Witt's theorem [9, §6], $F(\sqrt{-1}, \sqrt{a})$ is contained in a quaternionic extension.
- $(3) \rightarrow (1)$. By Witt's theorem, there exists $a \in \dot{F}$ such that $\langle 1, 1, 1 \rangle \cong \langle -1, a, -a \rangle$. Hence $\langle 1, 1, 1 \rangle$ is isotropic and s(F) = 2 $(as 1 \notin F^2)$.

An element a in \dot{F} is rigid if $a \notin \dot{F}^2 \cup -\dot{F}^2$ and $D(\langle 1, a \rangle) = \dot{F}^2 \cup a\dot{F}^2$.

Lemma 2. For $a \in D(\langle 1, 1 \rangle)$, $a \notin F^2$, the following are equivalent:

- (1) a is not rigid
- (2) $F(\sqrt{a})$ can be embedded in a quaternionic Galois extension.

Proof. (1) \Rightarrow (2). As a is not rigid, there exists $b \notin F^2 \cup aF^2$ such that $\langle 1, a \rangle \cong \langle b, ab \rangle$. Hence $\langle 1, 1, 1 \rangle \cong \langle 1, a, a \rangle \cong \langle b, ab, a \rangle$ and [9, §6] applies.

 $(2) \Rightarrow (1)$. By [9, §6] there exists $b \in F \setminus (F^2 \cup aF^2)$ such that $\langle a, b, ab \rangle \cong \langle 1, 1, 1 \rangle \cong \langle a, a, 1 \rangle$ and by Witt's cancellation $\langle b, ab \rangle \cong \langle 1, a \rangle$. Hence a is not rigid.

Remark. There exist fields with s(F) = 2 such that all elements not in $F^2 \cup -F^2$ are rigid (e.g. $F = \mathbf{F}_3((t_1)) \dots ((t_n))$). Of course, for such fields $D(\langle 1, 1 \rangle) = \dot{F}^2 \cup -\dot{F}^2$ [7, Corollary 1.2].

Let WF denote the Witt ring of anisotropic quadratic forms over F and let $G_F(2)=\mathrm{Gal}(F(2)/F)$, where F(2) is the maximal 2-extension of F. The next theorem improves Theorem 3.5 in [7]:

Theorem 1. For a field with $|\dot{F}/\dot{F}^2| > 2$ the following are equivalent:

- (1) $WF \cong \mathbb{Z}/2\mathbb{Z}[\dot{F}/\dot{F}^2]$
- (2) $G_F(2)$ has (topological) generators $\{y_i, x\}_{i \in I}$ with relations $y_i y_j = y_j y_i$ and either $xy_i x^{-1} = y_i^{5^m}$ for fixed $m = 2^n (n \ge 0)$ and all $i \in I$ or $xy_i = y_i x$ for all i.
- (3) The dihedral group D_8 of order 8 does not occur as a Galois group over ${\it F}$.
- (4) F is not formally real and the quaternion group H_8 does not occur as a Galois group over F.

Proof. The equivalence of (1) and (3) as well as the implication $(3) \Rightarrow (4)$ is contained in [7, Th. 3.5].

 $(1) \Rightarrow (2)$. If all 2-power roots of unity lie in F then by [7, Cor. 3.9(2)] $G_F(2)$ has generators and relations as described with $xy_i = y_ix$ for all $i \in I$. Now assume F does not contain all 2-power roots of unity. By [3, Ths. 2.1, 2.3,

and Lemma 4.1(i)], $G_F(2)$ has the described generators and relations where $n \ge 0$ is the largest integer such that F contains a primitive 2^{n+2} th root of unity.

- $(2)\Rightarrow (3)$. As D_8 is a 2-group, D_8 occurs as a Galois group over F iff D_8 is a homomorphic image of $G_F(2)$. However, a pro-2-group with generators and relations described in (2) cannot have D_8 as a homomorphic image.
- $(4)\Rightarrow (1)$. Assume (4). From Lemma 2 it follows that any sum of two squares in $F\setminus (F^2\cup -F^2)$ is rigid and hence a sum of three squares in F can be written as the sum of two squares. Inductively it follows that $\dot{F}=D(\langle 1,1\rangle)$. Hence by Lemma 2 all elements in $F\setminus (F^2\cup -F^2)$ are rigid and by Lemma 1, $-1\in F^2$. Statement (1) now follows from [7, Th. 1.5].

Corollary. Assume F is not formally real. Then D_8 occurs as a Galois group over F if and only if H_8 occurs over F.

Remark. If G is a pro-2-group with generators and relations as described in Theorem 1 (2) there is a field F with $G_F(2) \cong G$. This can be seen as follows:

If G is not abelian let $\Gamma = \mathbf{Z}^{(I)}$ (direct sum), let K be a 2-extension of $\mathbf{Q}(e_{n+2})$ maximal with respect to the exclusion of e_{n+3} , where e_k is a primitive 2^k th root of unity, and let $F = K((\Gamma))$ be the generalized henselian power series field. If G is abelian (with basis $\{y_i\}_{i\in I}$) take $F = \mathbf{C}((\Gamma))$. Then (in either case) $G_F(2) \cong G$ by [3, Th. 2.4].

Now let F be formally real, let $F_{\rm py}$ denote the pythagorean closure of F, and let $G_{\rm py}={\rm Gal}(F_{\rm py}/F)$ denote the corresponding pro-2-Galois group. In [5], Minač showed that if D_8 is not a homomorphic image of $G_{\rm py}$ then neither is H_8 . His argument used an equivalent form of Witt's theorem [2, 7.7 (ii)] (compare [6, Example, 663–664]) and improved Theorem 3.9 in [8] (answering a question raised in [8]). It should be pointed out that there is an oversight in the statement of [8, Theorem 3.9]; namely, the statement should include the assumption that F is formally real (the observation on lines 2–3 of page 104 of [8] is false if F is nonreal of level 2). The next theorem improves Minač's theorem.

Theorem 2 (cf. [5, Th. 2], [8, Th. 3.9]). For a formally real field the following are equivalent:

- (1) If $t \in F \setminus F^2$ is a sum of squares then t is rigid.
- (2) D_8 is not a homomorphic image of G_{pv} .
- (3) H_8 does not occur as a Galois group over F.
- (4) H_8 is not a homomorphic image of G_{py} .

Proof The equivalence of (1) and (2) is contained in [8, Th. 3.9] while the equivalence of (1) and (3) follows from Lemma 2. It remains to prove $(4) \Rightarrow (3)$:

Assume there exists a Galois extension K/F such that $Gal(K/F) \cong H_8$. Then there exist a, b in F, independent mod squares, such that $F(\sqrt{a}, \sqrt{b}) \subseteq K$. By [9, §6] $(a, b, ab) \cong (1, 1, 1)$. Hence $F(\sqrt{a}, \sqrt{b}) \subseteq F_{pv}$ so there is an

624 ROGER WARE

epimorphism $f \colon G_{\mathrm{py}} \to V = \mathrm{Gal}(F(\sqrt{a}\,,\sqrt{b})/F)$ and a diagram

$$\begin{matrix} G_{\mathrm{py}} \\ \downarrow \\ 1 \to \mathbf{Z}/2\mathbf{Z} \to H_8 \xrightarrow{h} V \to 1 \end{matrix}$$

with exact row. Let $e \in H^2(V, \mathbb{Z}/2\mathbb{Z})$ correspond to the above row. It is well known that there is a surjective homomorphism $\overline{f}: G_{py} \to H_8$ such that $h \circ \overline{f} = f$ if and only if $f^*(e) = 0$ where $f^*: H^2(V, \mathbb{Z}/2\mathbb{Z}) \to H^2(G_{py}, \mathbb{Z}/2\mathbb{Z})$ is induced by f (cf., [2, §7], [6, §3]).

Let G_F be the absolute Galois group of F, let $s\colon G_F\to G_{\mathrm{py}}$ be the natural surjection, and let $g=f\circ s$. Then if $\overline{g}\colon G_F\to \mathrm{Gal}(K/F)\cong H_8$ is the natural map, we have $g=h\circ \overline{g}$. Hence $g^*(e)=0$ in $H^2(G_F,\mathbf{Z}/2\mathbf{Z})$. By [8, Cor. 2.2], $H^2(G_{\mathrm{py}},\mathbf{Z}/2\mathbf{Z})\to Br(F_{\mathrm{py}}/F)\subseteq Br(F)$ is injective, whence $s^*\colon H^2(G_{\mathrm{py}},\mathbf{Z}/2\mathbf{Z})\to H^2(G_F,\mathbf{Z}/2\mathbf{Z})\cong Br_2(F)$ is injective. As $g^*=s^*\circ f^*$ we conclude that $f^*(e)=0$. Hence H_8 is a homomorphic image of G_{py} , completing the proof of Theorem 2.

An extension K/F is called *totally positive* if every ordering (if any) on F extends to an ordering on K.

Corollary. For a field F the following are equivalent:

- (1) H_8 occurs as a Galois group over F.
- (2) There is a totally positive Galois extension K/F such that $Gal(K/F) \cong H_g$.
- (3) There is a totally positive Galois extension L/F such that $Gal(L/F) \cong D_8$.

Proof. It is well known that a 2-extension K/F is totally positive iff $K \subseteq F_{py}$.

Theorem 3. For a uniquely ordered field F with positive cone P the following are equivalent:

- (1) $WF \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}[P/\dot{F}^2]$, the fibre product over $\mathbb{Z}/2\mathbb{Z}$ (= product in the category of Witt rings).
- (2) $G_F(2) \cong \mathbb{Z}/2\mathbb{Z} * G_{py}$ (free pro-2-product) and G_{py} has (topological) generators $\{y_i, x\}_{i \in I}$ with relations $y_i y_j = y_j y_i$ and either $x y_i x^{-1} = y_i^{5^m}$ for fixed $m = 2^n$ $(n \ge 0)$ and for all $i \in I$ or $x y_i = y_i x$ for all i.
 - (3) G_{pv} has generators and relations as described in (2).
 - (4) $H_8^{P_3}$ does not occur as a Galois group over F.

Proof. (1) \Rightarrow (2). By [1], Realization Theorem 4.8 and Remarks 4.9(i) there exist 2-extensions K, L of F such that $WK \cong \mathbb{Z}$, $WL \cong \mathbb{Z}/2\mathbb{Z}[P/\dot{F}^2]$,

and the inclusions $F \subseteq K$, L induce the isomorphisms $WF \stackrel{\cong}{\to} WK \times WL \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}[P/\dot{F}^2]$. By [3, Th. 3.4], $G_F(2) \cong G_K(2) * G_L(2) \cong \mathbb{Z}/2\mathbb{Z} * G_L(2)$ and by Theorem 1, $G_I(2)$ has the generators and relations described in (2).

Let I_tF denote the torsion subgroup of the fundamental ideal IF of WF. As $WF \cong \mathbb{Z} \times WL$ the inclusion $F \subseteq L$ induces an isomorphism $I_tF \to IL = I_tL$ whence by [8, Th. 2.10], $G_{nv} \cong G_I(2)$.

- $(3) \Rightarrow (4)$. A pro-2-group with generators and relations as described in (2) cannot have H_8 as a homomorphic image. By Theorem 2, H_8 does not occur as a Galois group over F.
- $(4)\Rightarrow(1)$. As F is uniquely ordered, P is the set of nonzero sums of squares and $(\dot{F}:P)=2$. Hence the mapping $\mathbf{Z}[P/\dot{F}^2]\to WF$ via $\sum n_i[t_i]\to\sum n_i\langle t_i\rangle$ is surjective and by Theorem 2 (1), its kernel is additively generated by the elements 2[t]-2[u], t, $u\in P$. On the other hand, $\mathbf{Z}[P/\dot{F}^2]\to\mathbf{Z}\times\mathbf{Z}/2\mathbf{Z}[P/\dot{F}^2]$ via $\sum n_i[t_i]\to(\sum n_i,\sum \overline{n}_i[t_i])$ is surjective and $\sum n_i[t_i]$ lies in the kernel iff all n_i are even and $\sum n_i=0$. This happens iff $\sum n_i[t_i]=\sum 2([u_i]-[v_i])$, proving (1).

Remark. If G is a pro-2-group with generators and relations described in Theorem 3 (2) then by the remark following Theorem 1 and [8, Th. 4.1] there is a uniquely ordered field F with $G_{\rm pv}\cong G$.

REFERENCES

- 1. J. Arason, R. Elman and B. Jacob, Rigid elements, valuations and realizations of Witt rings, J. Algebra 110 (1987), 449-467.
- 2. A. Fröhlich, Orthogonal representation of Galois groups, Stiefel-Whitney classes and Hasse-Witt invariants, J. Reine Angew. Math. 360 (1985), 84-123.
- 3. B. Jacob and R. Ware, A recursive description of the maximal pro-2-Galois group via Witt rings, Math. Z. 200 (1989), 379-396.
- 4. T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, Elmsford, New York, 1973.
- 5. J. Minač, Quaternion fields inside the Pythagorean closure, J. Pure Appl. Algebra 57 (1989), 79-82
- 6. J.-P. Serre, L'invariant de Witt de la Forme $Tr(x^2)$, Comment Math. Helv. **59** (1984), 651-676
- 7. R. Ware, When are Witt rings group rings? II, Pacific J. Math. 76 (1978), 541-564.
- 8. ____, Quadratic forms and pro-2-groups II: the Galois group of the Pythagorean closure of a formally real field, J. Pure Appl. Algebra 30 (1983), 95-107.
- E. Witt, Konstruktion von galoisschen Körpen der Charakteristik p zu vorgegebener Gruppe der Ordnung pf, J. Reine Angew. Math. 174 (1936), 237-245.

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802