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CLOSURE OF INVERTIBLE OPERATORS ON A HILBERT SPACE

RICHARD BOULDIN

(Communicated by Palle E. T. Jorgensen)

Abstract. Although most of the characterizations of the closure of the invert-

ible operators on a separable Hubert space do not extend to a nonseparable

Hubert space, this note gives a characterization for an arbitrary Hubert space

that generalizes the separable case in a natural way. The new concept of essential

nullity, which facilitates this characterization, should find other applications.

1. Introduction

This research is motivated by a theorem proved by Robin Harte in [6]. In

order to state that result we recall the following definitions. An element a of

the Banach algebra j/ is said to be regular provided there is an element b gs/

such that a = aba. We say that a is decomposably regular provided the b in

the preceding equation can be chosen to be an invertible element of s>f . Harte's

theorem asserts that a regular element a belongs to the closure of the invertible

elements if and only if it is decomposably regular.

Much of the interest in Harte's theorem arises from its application to the

Banach algebra 38(H) of (bounded linear) operators on the Hubert space

77. For T g ¿ß(H) we define nul T and def T to be the cardinal numbers

dim ker T and dim ker T*, respectively. It follows from the work of Atkinson

[ 1 ] that T is regular if and only if T has closed range. We shall prove in the

next section that a regular operator T is decomposably regular if and only if

nul T = def T. Thus, it follows from Harte's theorem that an operator T with

closed range belongs to the closure of the invertible operators & if and only if

nul T = def T. This characterization does not require the underlying Hilbert

space to be separable.

When 77 is separable there is a nice characterization of the closure of &

that is immediate from the main theorem of [3]. The operator T belongs to

the closure of if if and only if nul T = def T or the range of T is not closed.

Regardless of whether 77 is separable or not, the closure of ,f is character-

ized in [4] but the characterization uses W* algebra existence theorems and
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concepts, tïiat are difEcull to. interpret concretely.   This note will establish a

chja^ierizaiion that is analogous to Harte's theorem and is easy to understand

concretely.
.,t£fc"Ü\T\ be the usual polar factorization of T and let E(-) be the spectral

measure for the nonnegative operator |T|. We define ess nul T by the equation
■

essnuir = inf{dim7i([0,e))77: e > 0}

and we define ess def T by

ess def T = ess nul T*.

2. Main results

First we prove the previously mentioned proposition that facilitates the ap-

plication of Harte's theorem to the Hilbert space case.

1. Proposition. Suppose T G 3§(H) has closed range. The operator T is

decomposably regular if and only if nul T = defT.

Proof. If nul T = def T then there is a linear isometry V of ( TH) onto

ker T. Let B coincide with V on ( TH) and on TH let it be the inverse of

T restricted to (kerT)x . Then TBT = T holds.

Assume that TBT = T holds for an invertible operator B. Since TB is

idempotent and 777 = TBH, we see that 77 = 777 © ker TB . It follows from

this equation that

dim ker T* = dim( 777)   = dim ker TB = dim ker T.

We shall need the next lemma in the proof of the main theorem.

2. Lemma. Let T = U\T\ be the usual polar factorization and let V be the

isometry obtained by restricting U to the closure of the range of T*, denoted

(T*H) , and considering (TH)~ to be the range of V. Let E(-) and F(-)

denotgrthe spectral measures of \T\ and \T*\, respectively. Then on the obvious

subspaees we: have \T*\m. V\T\V* and F.^Jf) = VE(J¡r)V* for any interval S

contained in (0, oo).

Proof. Note that TT* = Í7|r|2í7* = U(T*T)U*. Since the square root of an

operator is the limit of polynomials in the operator (see [5, Problem 95]), we

see t&ti Í^¡!T|!'* = IT"*!. The anal assertion follows from the equations

\T*\ m' V\T\V* to V f Í tdE(t)) V*,

¡t*\m  [ tdVE(t)V*

and the fas* that the last equation characterizes F(-).

Nob» «MMig'«ate and prove our main result.

-   ■*     i.îJ»'.--,:1»' ,3tf$?$**
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3. Theorem. The operator T belongs to the closure of the invertible operators

2? if and only if ess nul T = ess def T.

Proof. Because dim7i([0,e))77 is a discrete valued nondecreasing function of

e, we conclude that there is a positive y such that dimE([0,e))H = ess nul T

for 0 < e < y . Similarly we get dim7r([0,e))77 = ess def T for 0 < e < y and

so we assume that dim7i([0,£))77 = dimF([0,s))H for 0 < e < y. Define

R(e) to agree with \T\ on E([e,oo))H and to agree with el on 7s([0,£))77;

define U(e) to agree with U on 7s([e,oo))77 and on 7i([0,e))77 let it agree

with V, where V is an isometry of 7}([0,e))77 onto F([0,e))77. Using the

final conclusion of the lemma and the fact that

<7£([0,oo))77 = U(\T\H)~ = (TH)~ = (|r*|77)_ ,

we see that U(e) is one-to-one and onto; thus, U(e) is invertible. Clearly R(e)

is invertible and it is straightforward to see that

\\UR-U(e)R(e)\\ <2e.

This proves that T belongs to &~ .

Assume that A. is a sequence of invertible operators such that \\T-A .|| —> 0

and, for the sake of a contradiction assume that ess nul T / ess def T. Re-

place T with T*, if necessary, so that ess nul T > ess def T. Note that

\\T*T - A*Aj\\ —» 0. By the continuity of square roots (see [2, Theorem 2]), we

conclude that |||r| - \Aj\\\ -► 0.

Choose y > 0 such that

dim7i([0,e))77 = ess nul T,        dimF([0,e))H = ess def T

for 0 < e < y. Let 77„ = E([y ,oo))H and define B on 77^ to agree with the

inverse of \T\ restricted to 77 , denoted (\T\\Hy)~ ; let B be zero on (Hy) .

Note that TB = UE([y,oo)) and that U\Aj\(B+l/j) converges to TB. Let

the polar factorization of U\AMB + 1/7) be denoted W^./î. where 7^ > 0;

note that Wj is unitary and \\Rj - W*UE([y ,oo))\\ —>0. Choose j sufficiently

large that

i
(*) \\R  -W UE([y,oo))\\<^.

Because the dimension of kerW*UE([y,oo)) = E([0,y))H exceeds

dim W*F([0,y))H there exists a unit vector / in E([0,y))H that is orthog-

onal to W*F([0,y))H. This follows from the observation that F([0,y))Wj

restricted to E([0,y))H must have nontrivial kernel. The next equations fol-

low primarily from the lemma:

(W* UE([y,oo)))* = (W;UE([y,oo))U*U)* = (W;F([y,œ))U)*

= U*F([y,oo))Wj.



724 RICHARD BOULDIN

Thus, the kernel of (W*UE([y,oo)))* is W*F([0,y))H. From the inequality

(*) and the fact that U*F([y, oo))W. is a partial isometry we get

j>\\Rjf-W¡UE([y,oo))f\\ = \\Rjf\\

and

^ > ||jy- £7*F([y,oo))Wyil > \\U*F([y,oo))^/|| - ||*/|| > j.

This contradiction proves that ess nul T — ess def T.

Note that Theorem 3 extends Harte's theorem in the Hilbert space case since

ess nul T = nul T and ess def T = def T when T has closed range.

The next lemma provides an alternative characterization of ess nul T. We

shall use the result in the proof of Theorem 5.

4. Lemma. Let e > 0 and cardinal number ß be given. We have

dimE([0,e))H = ß if and only if the inequality ||7"|77J < e implies that
dim 77£ < ß and equality is achieved in the last inequality for some choice of

He-

Proof. If dim7i([0,e))77 = ß then we choose 77£ to be E([0,s))H and we

need only prove that there is no subspace 770 with dimension higher than ß

and || T\H0\\ < e. For the sake of a contradiction assume that dim 770 = a > ß .

Since

dimE([0, e))H0 < dimE([0,e))H = ß,

there is a nonzero vector / G 770  such that 7s([0,e))/ = 0.   Thus,  / =

E([e,oo))f and

|||r|/||Him£([£,oc))/||>e||/||
which is a contradiction.

Suppose there is a subspace 77£ of dimension ß suchthat ||7'|77£|| < e and

no subspace of higher dimension has this property. If dim7i([0,e))77 = y < ß

then the argument in the preceding paragraph leads to a contradiction. It is not

possible for y > ß since 77£ can be chosen to be 7s([0,e))77. This proves the

lemma.

The next theorem shows that ess nul T has a lower semicontinuous property.

5. Theorem. If \\ T - A. II —► 0 and a = lim inf ess nul A   then ess nul T > a.J  " j" j —

Proof. Replace A. with a subsequence such that lim ess nul A¡ = a . Let (?.(•)

denote the spectral measure for \A\. Since the values of ess nul yl. are discrete,

it follows that dim G([0,e))77 = ess nul A} for positive s sufficiently small

and that ess nul A¡ = a for j sufficiently large. Let e > 0 be given. Choose j

sufficiently large that \\T - A || < e/2 and ess nul A} = a. Then choose y > 0

sufficiently small that y < e/2 and dim G .([O, y)) H = essnul^ = a. Note

that

||r|C7j([0,y))77||<P;|G.([0,y))77|| + ||r-^.||<e.

By the preceding lemma we conclude that dim7i([0,e))77 > dimG;([0,7))77 = a.
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3. Remarks

In this section we note that a certain characterization of the closure of the

invertible operators ^_ on a separable Hilbert space does not hold more gen-

erally. Izumino shows in [7, Corollary to Theorem 2] that &~ is the set of

all compact perturbations of the operators T with nul T — def T. The next

result shows that Izumino's characterization does not extend to the nonsepara-

ble case. We say that T has index equal to zero, written ind T — 0, provided

nul 7 = def 7\

6. Theorem. The set of operators T + K with indT = 0 and K a compact

operator is a subset of the closure of the invertible operators *§~ but sometimes

it is a proper subset.

Proof. In order to show that (T + K) G &~ we use Izumino's argument. Let

T = U\T\ be a polar factorization with U unitary. For each positive integer

j we see that (\T\ + 1/7 + U*K) is a Fredholm operator with index 0 since it

is a compact perturbation of an invertible operator. Thus, U(\T\+ \/j + U*K)

is a sequence of Fredholm operators with index 0 that converges to T + K. It

follows from Theorem 3 or Harte's theorem that any Fredholm operator with

index 0 is the limit of invertible operators. Thus, (T + K) G &~ .

Now we describe an operator B in &~ that cannot be represented as T + K

with ind T = 0 and K compact. Let R be multiplication by the independent

variable on 77 = L (dp) where p is the counting measure on [0,1]—i.e.,

p(S?) is the cardinality of 5?. Note that the Schauder dimension of 77 is

2 °. Let 770 be the subspace 77/[0 5] where ^[0 5] is the characteristic function

of the closed interval [0,.5]. Let U be an isometry of 77 onto 770 and let

B = UR. Note that nul 5 = 0, def B = 2*° and, ess nul 7? = 2N° = ess def/? .

By Theorem 3 it follows that fief".

No compact perturbation of B can have index zero because nul(7? + 7C ) < N0

and def(7? + K) = 2 ° for any compact operator K. Both observations follow

from the fact that din\(\aerK) < N0 for any compact operator K. This last

assertion follows from the Riesz-Schauder theory for compact operators. See

[8], for example.
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