NORMS OF HANKEL OPERATORS ON A BIDISC

TAKAHIKO NAKAZI

(Communicated by Paul S. Muhly)

ABSTRACT. In the Hardy space on the bidisc T^2 , if ϕ is a bounded function in the Lebesgue space and if its Fourier series vanishes on half of \mathbb{Z}^2 , then the norm of the Hankel operator H_{ϕ} is equal to the quotient norm of ϕ by the Hardy space $H^{\infty}(T^2)$.

Let σ denote the Haar measure of the torus T^2 , the distinguished boundary of the unit bidisc U^2 in the space of 2 complex variables (z,w). Put $\mathbf{Z}_+^2 = \{(m,n) \in \mathbf{Z}^2 \, ; m \geq 0 \text{ and } n \geq 0\}$. For $1 \leq p \leq \infty$, $L^p = L^p(T^2,\sigma)$ denotes the Lebesgue space and $H^p = H^p(T^2,\sigma) = \{f \in L^p \, ; \hat{f}(m,n) = 0 \text{ if } (m,n) \notin \mathbf{Z}_+^2\}$. That is, H^p denotes the usual Hardy spaces on the bidisc. Let $K_0^p = \{f \in L^p \, ; \hat{f}(m,n) = 0 \text{ if } (-n,-m) \in \mathbf{Z}_+^2\}$.

For $\phi \in L^{\infty}$, the Hankel operator determined by ϕ is

$$H_{\phi} = (I - P)M_{\phi}|H^2$$

and the Toeplitz operator determined by ϕ is

$$T_{\phi} = PM_{\phi}|H^2,$$

where $P: L^2 \to H^2$ is the orthogonal projection and M_{ϕ} is the multiplication operator on L^2 associated with ϕ .

In the classical Hardy space $H^2(T)$ on the unit disc, the norms of Hankel operators H_{ϕ} are equal to the quotient norms of the symbols ϕ by $H^{\infty}(T)$ ([7], [8, pp. 4-6]). This is called Nehari's theorem. The author [6] gave a generalization of Nehari's theorem to the Hardy space $H^2(T^2)$ on the bidisc. The theorem is analogous to Nehari's theorem but does not give the norm of H_{ϕ} using the symbol ϕ . For the Hardy space on the unit ball of \mathbb{C}^n , it is known that the norm of a Hankel operator H_{ϕ} is equivalent to the BMO norm

Received by the editors March 1, 1989.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 47A30, 47B35; Secondary 46J15, 42B30.

Key words and phrases. bidisc, Hardy space, Hankel operator, norm.

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education.

of ϕ (cf. [2], [9]). However we do not know whether the same theorem is valid or not for that on the polydisc. In this paper, for the bidisc we show that if $\phi \in L^{\infty}$ is a function whose Fourier series vanish on the half of \mathbb{Z}^2 , then $\|H_{\phi}\| = \|\phi + H^{\infty}\|$.

In the classical Hardy space, the essential norms of Hankel operators are the quotient norms of the symbols by $H^{\infty}+C(T)$, where C(T) denotes the set of all continuous functions on the unit circle (cf. [8, p. 6]). Hence there exist many nonzero compact Hankel operators. However Curto, Muhly and Nakazi [3] showed that there does not exist any nonzero compact Hankel operator in the bidisc Hardy space. In this paper, roughly speaking, we show that if $\phi \in L^{\infty}$ is a function whose Fourier series vanish on the half of \mathbf{Z}^2 , then $\|H_{\phi}\|_e = \|H_{\phi}\|$ where $\|H_{\phi}\|_e$ denotes the essential norm. Moreover we use results about Hankel operators to study the invertibility of Toeplitz operators.

An order relation can be introduced in \mathbb{Z}^2 . Let L_r be a line with rational slope r in the plane. S_r denotes all lattice points on one side of L_r , together with those on the right side ray of L_r from the origin. When L is a real axis, that is, $L=L_0$, then $S_0=\{(m,0)\colon m>0\}\cup\{(m,n)\colon m>0\}$. When L is an imaginary axis, that is, $L=L_{-\infty}$, then $S_{-\infty}=\{(m,n)\colon m>0\}\cup\{(0,n)\colon n>0\}$. This order is non-archimedean, and \mathbb{Z}^2 has a smallest positive element (m_0,n_0) in S_r . We assume that S_r contains \mathbb{Z}^2_+ , that is, $-\infty \le r \le 0$. When $-\infty < r < 0$, $|m_0|$ and $|n_0|$ have no common factor except 1 and $r=n_0/m_0$, and $(m_1,n_1)=(0,1)$. When r=0, $(m_0,n_0)=(1,0)$ and let $(m_1,n_1)=(0,1)$. When $r=-\infty$, $(m_0,n_0)=(0,1)$ and let $(m_1,n_1)=(1,0)$. For each half plane S_r , put

$$Z = Z_{r} = z^{m_0} w^{n_0}$$

and

$$W=W_r=z^{m_1}w^{n_1}.$$

Hence $Z_0 = W_{-\infty} = z$ and $W_0 = Z_{-\infty} = w$, and if $-\infty < r < 0$ then $W_r = w$.

For each r with $-\infty \le r \le 0$, put $\mathbf{H}_r^p =$ the norm closure of $\bigcup_{j=-\infty}^{\infty} Z_r^j H^p$ in L^p if $1 \le p < \infty$ and $\mathbf{H}_r^\infty =$ the weak closure of $\bigcup_{j=-\infty}^{\infty} Z_r^j H^\infty$ in L^∞ . \mathscr{L}_r^p and \mathscr{H}_r^p denote the norm closure of the set of trigonometric polynomials and analytic polynomials, respectively, of Z_r in L^p if $1 \le p < \infty$. \mathscr{L}_r^∞ and \mathscr{H}_r^∞ denote the weak closure. Then

$$\mathbf{H}_r^p = \mathcal{L}_r^p + \mathcal{L}_r^p W + \dots + \mathcal{L}_r^p W^{n-1} + W^n \mathbf{H}_r^p.$$

Let E be a conditional expectation from \mathbf{H}_r^{∞} onto \mathcal{L}_r^{∞} . Then E is multiplicative on \mathbf{H}_r^{∞} and $\mathbf{H}_r^{\infty} + \overline{W} \overline{\mathbf{H}}_r^{\infty}$ is weak^{-*} dense in L^{∞} . Hence \mathbf{H}_r^{∞} is an

extended weak^{-*} Dirichlet algebra with respect to E (see [5]). Thus Theorems 4 and 4' in [5] imply

Lemma 1. Let $h \in \mathbf{H}_r^1$ and let $\varepsilon > 0$ be given. Then there is an $f \in \mathbf{H}_r^2$, $\|f\|_2 \le \|h\|_1$, and $g \in \mathbf{H}_r^2$, $\|g\|_2 \le \|h\|_1 + \varepsilon$, such that h = fg.

The proof is almost the same as the proof of Lemma 2.1 in [4].

Theorem 1. If ϕ is a function in L^{∞} , then

$$\|\phi + H^{\infty}\| \ge \|H_{\phi}\| \ge \sup\{\|\phi + \mathbf{H}_{r}^{\infty}\|; -\infty \le r \le 0\}.$$

Proof. It is sufficient to show that $||H_{\phi}|| \ge ||\phi + \mathbf{H}_{r}^{\infty}||$ for any r with $-\infty \le r \le 0$. Fix r with $-\infty \le r \le 0$. Since $Z^{j}\mathbf{H}_{r}^{2} = \mathbf{H}_{r}^{2}$ for any integer j, $H^{2} \times W\mathbf{H}_{r}^{2} = Z^{j}H^{2} \times W\mathbf{H}_{r}^{2}$ and hence

$$H^2 \times K_0^2 \supset \{\bigcup_{i=-\infty}^{\infty} Z^j H^2\} \times W\mathbf{H}_r^2$$

Hence,

$$\begin{split} \|H_{\phi}\| &= \sup \left\{ \left| \int \phi f g \, d\sigma \right| : f \in H^2 \,, g \in K_0^2 \,, \\ \|f\|_2 &\leq 1 \text{ and } \|g\|_2 \leq 1 \right\} \\ &\geq \sup \left\{ \left| \int \phi f g \, d\sigma \right| : f \in \cup_{j=-\infty}^{\infty} Z^j H^2 \,, g \in W\mathbf{H}_r^2 \,, \\ \|f\|_2 &\leq 1 \text{ and } \|g\|_2 \leq 1 \right\} \\ &= \sup \left\{ \left| \int \phi f g \, d\sigma \right| : f \in \mathbf{H}_r^2 \,, g \in W\mathbf{H}_r^2 \,, \\ \|f\|_2 &\leq 1 \text{ and } \|g\|_2 \leq 1 \right\} \\ &= \|\phi + \mathbf{H}_r^\infty \|. \end{split}$$

We used Lemma 1 in the last equality (cf. [4, Corollary 2.1.1.]).

Lemma 2. If $\phi \in \overline{WH}_r^{\infty}$ then $\|\phi + \mathbf{H}_r^{\infty}\| = \|\phi + H^{\infty}\|$.

Proof. By duality, it is sufficient to show that

$$\sup \left\{ \left| \int \phi f \, d\sigma \right| : f \in K_0^1, \|f\|_1 \le 1 \right\}$$

$$= \sup \left\{ \left| \int \phi F \, d\sigma \right| : F \in W\mathbf{H}_r^1, \|F\|_1 \le 1 \right\}.$$

Let Q be an orthogonal projection from L^2 onto $W\mathbf{H}_r^2$. If $\phi \in \overline{W}\overline{\mathbf{H}}_r^{\infty}$, then for any $f \in K_0^2$,

$$\int \phi f \, d\sigma = \int \phi Q(f) \, d\sigma.$$

Since $QK_0^2 = W\mathbf{H}_r^2$, the two supremums above are equal because K_0^2 is dense in K_0^1 and \mathbf{H}_r^2 is dense in \mathbf{H}_r^1 . \square

Theorem 2. For any r with $-\infty \le r \le 0$, if ϕ is in $\overline{WH}_r^{\infty} + H^{\infty}$, then $\|H_{\phi}\| = \|\phi + H^{\infty}\|$.

The proof is clear by Theorem 1 and Lemma 2.

For any r with $-\infty \le r \le 0$, we want to know about $||H_{\phi}||$ for ϕ in \mathscr{L}_{r}^{∞} . The following proposition answers the request only when r = 0 or $-\infty$.

Proposition 3. Put
$$r=0$$
 or $-\infty$. If ϕ is in $\mathscr{L}_r^\infty + H^\infty$ then
$$\|H_\phi\| = \|\phi + H^\infty\|.$$

Proof. For any r, \mathcal{H}_r^p is isometrically isomorphic to the classical Hardy space $H^p(T)$. Hence by Nehari's theorem (cf. [8, p. 11]),

$$\|H_{\phi}\| \ge \sup \left\{ \left| \int \phi f g \, d\sigma \right| ; f \in \mathcal{H}_r^2, g \in \mathcal{H}_r^2,$$

$$\|f\|_2 \le 1 \text{ and } \|g\|_2 \le 1 \right\}$$

$$= \|\phi + \mathscr{H}_r^{\infty}\|.$$

If r = 0 or $-\infty$, $H^{\infty} \supset \mathcal{H}_r^{\infty}$ and hence the proposition follows. \square

By Theorem 1, we can ask whether $\|H_{\phi}\| = \sup_r \|\phi + \mathbf{H}_r^{\infty}\|$ is true or not. By Theorem 2, if $\phi \in \overline{W}\mathbf{H}_r^{\infty} + H^{\infty}$ then $\|H_{\phi}\| = \|\phi + \mathbf{H}_r^{\infty}\|$. However even if $\phi \in \mathcal{L}_r^{\infty}$ for r = 0 or $-\infty$, we do not know whether this equality holds. If $\phi \in \overline{\mathcal{H}}_r^{\infty} + \mathcal{H}_r^{\infty}$ then $\phi - \hat{\phi}(0,0) \in \overline{W}\mathbf{H}_s^{\infty}$ for some s with $-\infty \le s \le 0$. Hence $\|H_{\phi}\| = \|\phi + \mathbf{H}_s^{\infty}\|$.

Now we will give two corollaries about essential norms of Hankel operators and Toeplitz operators.

Corollary 1. Put
$$r=0$$
 or $-\infty$. If ϕ is in $\overline{W}\overline{H}_r^{\infty} + H^{\infty}$ then $\|H_{\phi}\|_{e} = \|H_{\phi}\| = \|\phi + H^{\infty}\|$.

Proof. By Theorem 2 and Lemma 2,

$$||H_{Z^n\phi}|| = ||Z^n\phi + H^{\infty}|| = ||\phi + H^{\infty}||$$

because $Z^n \phi \in \overline{WH_r^\infty} + H^\infty$. Since Z = z and W = w for r = 0, and Z = w and W = z for $r = -\infty$, both T_Z and T_W are unilateral shift operators on H^2 with infinite multiplicities. By the proof for classical Hardy space (cf. [1]), the theorem follows. \square

Corollary 2. Let ϕ be a unimodular function in L^{∞} .

- (1) For any fixed r with $-\infty \le r \le 0$, suppose ϕ is in $\overline{W}\overline{H}_r^\infty + H^\infty$. Then T_ϕ is left invertible if and only if $\|\phi + H^\infty\| < 1$.
- (2) For r = 0 or $-\infty$, suppose ϕ is in \mathscr{L}_r^{∞} . Then T_{ϕ} is left invertible if and only if $\|\phi + H^{\infty}\| < 1$.
- (3) For r = 0 or $-\infty$, suppose ϕ is in \overline{WH}_r^{∞} . Then T_{ϕ} is left Fredholm if and only if $\|\phi + H^{\infty}\| < 1$.

Proof. Using the well known equality

$$T_{\phi}^* T_{\phi} + H_{\phi}^* H_{\phi} = I$$

we can show (1) and (2) by Theorem 2 and Theorem 3, respectively, and (3) by Theorem 4. \Box

REFERENCES

- 1. S. Axler, I. D. Berg, N. Jewell and A. Shields, Approximation by compact operators and the space $H^{\infty} + C$, Ann. of Math. 109 (1979), 601-612.
- R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
- 3. R. E. Curto, P. S. Muhly and T. Nakazi, Uniform algebras, Hankel operators and invariant subspaces, Oper. Theory: Adv. Appl. 17 (1986), 109x119.
- R. E. Curto, P. S. Muhly, T. Nakazi and J. Xia, Hankel operators and uniform algebras, Archiv der Math. 43 (1984), 440-447.
- 5. T. Nakazi, Extended weak^{-*} Dirichlet algebras, Pacific J. Math. **81** (1979), 493–513.
- 6. _____, Norms of Hankel operators and uniform algebras, Trans. Amer. Math. Soc. 299 (1987), 573-580.
- 7. Z. Nehari, On bounded bilinear forms, Ann. of Math. 65 (1957), 153-162.
- 8. S. C. Power, *Hankel operators on Hilbert space*, Research Notes in Math. 64, Pitman, Boston, 1982.
- 9. A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J. 30 (1978), 163-171.

Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060, Japan