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THE MATHERON REPRESENTATION THEOREM

FOR GRAY-SCALE MORPHOLOGICAL FILTERS

G. CROMBEZ

(Communicated by Andrew Odlyzko)

Abstract. We present a new proof of the Matheron representation theorem for

gray-scale morphological filters, without using either the representation theorem

for subsets of the plane or the umbra transform.

1. Introduction

An important theorem in mathematical morphology is the Matheron repre-

sentation theorem, which for subsets of 7? may be stated as follows [2, Chapter

5]: if *F is an increasing translation-invariant mapping between subsets of 7? ,

then for any subset A of R   we have

V(A)=    [J    &(*>*),

where %(A,B) denotes the erosion of the set A by the set B, and Ker^ (the

kernel of *F) is the collection of all subsets B of R2 such that *¥(B) contains

the origin.

In [2, Chapter 7], the Matheron representation theorem has been extended

to the case of gray-scale morphological filters. In their proof, however, the

authors use the representation theorem for subsets of R and also the so-called

"umbra transform". In the following sections, we give a proof of the Matheron

representation theorem for gray-scale morphological filters without using either

the theorem for R or the umbra transform; moreover, the theorem for subsets

of R   is just a special case of our general theorem.

2. Definitions and notations

Let G be a (not necessarily commutative) group with a multiplicative group

operation and identity e ; the inverse of x G G is denoted by x~  .
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When F is a subgroup of the additive group 7? of real numbers, G x V

is also a group for the following operation: forxGG,yGG, r g V, and

s G V, we define

(x,r)-(y,s) = (xy,r + s).

For the case of mathematical morphology, G may be thought of as (7? , +) or

(Z2, +), while for V we take V = R , V = Z or V = {0} , where Z is the set

of integers. For V = {0}, G x V can be identified in the usual manner with

G.

We denote by <9" the set of bounded functions / defined on a subset Df

(also written as D(f) ) of G and with values in V. 5?* is the set of functions

defined on or subset of G and with values in V u {+00}. We identify / with

its graph G(f) ; hence, for f gS? we have / = G(f) = {(x,f(x)): x G Df} ,

which is a subset of G x V. When V = {0} , then f={(x,0):xG Df) = Df,

which shows that in that case we may consider S? to be the set 2   .

For / and g in S?, the notation f <£ g means that 7J). c D and /(x) ^

g(x)Vx G Dr ; specifically, for V = {0} , we have f <Zi g o Df c D . When

(b ,r) gG x V and / G ̂ , the left-translate (ft ./ is defined by ({b r]f)(x) =

f(b~lx) + r. In particular, for V = {0} , we have {bfi)f = D{bfi)f=(b,0)-Df,

where in the last term we identify Dr with (7)^,0).

According to the terminology in [2], a mapping ¥: «5^ —> ̂* is called /«-

creasing if / <c g implies *F(/) < *F(g) for all /, ^e<7; 4* is called

left translation invariant if ^(^ .f) —,b . 4/(/) for all (¿,r)eCxF and all

f gS^ . An increasing left translation invariant mapping 4/: ^ —► J?7* is called

a morphological filter. The kernel Ker *F of such filter is defined by Ker ¥ =

{/e^:vI/(/)(e)^0}. For V = {0} , this leads to KerV = {Df: e Gy¥(Df)} ,

which corresponds to the usual definition for mappings between subsets of R .

The final notation is the erosion <§*(/, g) of a function / in S? by a function

g in ¿5* ; again, it is a function in ^ defined as

&(f,g) = {(x,t)GGxV: xDg c Df,t = sup{s G V: g(x']-) + s< /(.)}.

This definition may be found in [2], and also in [1], where we gave a unifying

theory for the morphological operations dilation, erosion and opening for gray-

scale images; in particular, for V = {0} and G = R , we are again led to the

erosion of two subsets of R . The only properties we need in the sequel, and

which may readily be derived from the definition, are

*(lb,J,g)=  [b,?(f,8),

fl<:f2=>?(f.,g)<:g'(f2,g).
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3. The Matheron representation theorem

Proposition 1. Let 4*,  and 4*2 be morphological filters. Then

Kery.cKery^^y/)«^/),        V/e^.

Proof. Suppose 4/1(/) < ¥2(/)  for all / e 3".   Given / g Ker«P, , then

^i (/)(*) =1 0-   From our assumption we have Z)(V,(/)) C ß(V2(/))  and

4'1(/)(x) % *F2(/)(jf) for all x e 7)(4'1(/)). Hence, it follows that 4/2(/)(é>)

is defined and ¥,(/)(» = 4'2(/)(é>) ; therefore fe Ker^ .

Conversely, suppose KerT, c Ker^. We must show that for each /

in S?,  D(Vx(f)) c 7)(T2(/)), and for each x in D(Vx(f)),  Vx(f)(x) <

V2(f)(x) ■
(i) If it is not true that  D^V^f)) C D(*¥2(f))  for all  / in S>, then

there exists / e S? and x e 7)(xr,,(/)) such that x £ 7)(VP2(/)).  Suppose

^iC/lC*) = a e F, and consider the function , _, _a)f ■ Then

VA^,^)fKe)*%¥ï(f)(x)-a = 0,

which means that . _, _a)f belongs to KerT, ; however, 4,2(,JC_, -a)/)(e) *s

not defined since x £ D(*¥2(f)), and so , _, _a)f is not an element of Ker4^ .

This is a contradiction.

(ii) Suppose there exists / G S? and x G D(y¥x(f)) such that 4/,(/)(x) >

4*2(/)(x). If 4*, (/)(■*) = a G F, consider again the function , _, _a)f', then

^((r-i -a)f)(e) = 0, while 4/2LJC_i _a)f)(e) < 0. This is again a contradiction.

(When 4/1(/)(m) = +oo in (i) or (ii), the proof is easily adapted).

Corollary 1.  When x¥x and XV2 are morphological filters, then

4», = 4,2<»Ker4'1 =Ker4/2.

Given a fixed function g in ¿?, we define the mapping 4*   on £7 by means

Vg(f) = &(f,g),      fe-?.

Proposition 2. (i) 4*   is a morphological filter.

(ii) Ker^ = {/:g«/}.

/"rao/, (i) This follows immediately from the properties of erosion, as men-

tioned at the end of §2.

(ii) fG Ker^ iff Vg(f)(e) > 0 iff ïï(f ,g)(e) > 0.
Now e G D(e?(f,g)) iff eD c Df, which is fulfilled as soon as g <c /.

Also ^(f,g)(e) >0 iff sup{5 6 F":s</(z)-g(ez), Vz e D^} ^0, which is

true iff g(z)<f(z), VzGDg.

Lemma 1. Let 4* be a morphological filter. Let x¥x be the mapping ¿? —► S?*,

defined as

0(47/))=    (J    D{g(f,g))
?€KerT

(4y/))(x) = sup£{(f,g)(x): g G Ker 4* such that x G D(%(f,g))}.

Then XVX  is a morphological filter.
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Proof, (i) We first investigate the left translation invariance of 4*, . Let (b ,r) g

G x V, / g S?. Then, since D(,b ./) = bD, (for the group operation in G ),

we have

D{^U,r)f)=       U      D(Z((br)f,g))

=     U    D((br)^(f,g))
^GKerT

=       [J      bD(%(f,g)),
welter y

and also

^,r)vî/«(/)) = ^(VÏ/i(/))=    U    bD(%(f,g)).

Moreover,

*!((*,)/)(*) = sup{F((b r)f,g)(x): g G Ker 4* such that x G D(%((b r)f, g))}

= sup{(b r)r(f,g)(x): g g Ker 4* such that x e bD{W{f,g))}

= sup{(r(f ,g)(b"'x) + r) : g g Ker4/ such that b~lx G D(?(f,g))},

which is exactly the value of {b f)4'1(/)(x).

(ii) To show that 4*, is also increasing, we have to prove that / < h implies

D(Vx(f))cD(Vx(h)) and Vx(f)(x) ^Vx(h)(x) for all xGD(Vx(f)).
This is almost obvious from the definition of 4*, , due to the fact that

D(ï?(f,g))cD(g?(h,g)) and that ïï(f,g)(x) < &(h,g){x).

Theorem 1. The Matheron representation theorem. Let *¥ be a morphological

filter. Then for each f in S", 4*(/) is the function defined as

D(V(f))=    (J    D(g>(f,g)), and
g€Ker*V

*¥(f){x) = sup{f(f,g)(x): g G Ker 4* such that x G D(g'(f,g))}.

Proof. We first remark that, for  g e Ker 4*  and  g < h ,   h G Ker 4*  also.

Hence, Ker4* D     1J    {h: g <C h}. But it is trivial that any g in Ker4* also

belongs to the set {h : g < h}. This leads to

Ker4'=    (J   {h:g<zh}.
geKerV

Taking into account the function 4*, introduced in Lemma 1, the theorem will

be proved if, according to Corollary 1, we show that Ker 4* = Ker 4^ .

First, suppose that / 6 Ker4^ ; then e G 7)(4/1(/)) and 4/,(/)(e) ^ 0.

From the first conclusion and the definition of 4*, , we derive that there exists

g g Ker4* such that e G D(W(f ,g)), or, to put it another way, there exists

g G Ker 4* such that D   c Df. The second conclusion leads to

sup{f(f ,g)(e) ^ 0: g G Ker4/ such that D   C DA
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which may also be written as

sup{(sup{s: s < f(z)-g(z)}: g G Ker4* such that Dg c Df} ^ 0.

From this we immediately conclude that there exists g G Ker4* with D c Dr

and g(z) ^ f(z), Vz G D , which means that / G Ker4/; hence Ker4'1 c

Ker 4'.

Conversely, suppose that / G Ker 4*; then there exists g G Ker 4* such that

D C Df and g(z) < f(z), Vz g D In order for / e Ker4/1 we have to

show that i'G7)(4,1(/)) and 4*,(/)(e)^0.

Now, from Lemma 1, e G D(v¥x(f)) iff there exists g G Ker4* such that

e G D(ê'(f,g)), which is true since D  c Dr for some g G Ker4/.

Again from Lemma 1, 4*,(/)(e) = sup{g*(f,g)(e): g G Ker4* such that D

C Df}, with g'(f,g)(e) = sup{s G V: s ^ f(z) - g(z)}, and this is already

non-negative for one particular g; hence x¥x(f)(e) ^0.   So we also have

Ker 4* c Ker4'1 . According to Corollary 1, 4* = 4*, , which proves the theorem.

We finally remark that, when taking in Theorem 1 V = {0} and G —

(R , +), we obtain as a special case the Matheron representation theorem for

subsets 7? .
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