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THE PARAMETERS OF A CHAIN SEQUENCE

T. S. CHIHARA

(Communicated by J. Marshall Ash)

Abstract. We give a method for constructing explicitly all parameter sequences

for any chain sequence for which one parameter sequence is known. An appli-

cation to orthogonal polynomials associated with birth and death processes is

given.

1. Introduction

A sequence {aj™, is a (positive) chain sequence if there exists a second

sequence {¿?„}^lo sucn tnat

M n (i)   0<*0<1,       0<s„<l   forn>l;
1     j (ii)   an = (\-gn_x)gn       forn>\.

Chain sequences seem to have appeared first in certain continued fractions stud-

ied by E. B. Van Vleck and the theory was formalized by Wall (see [13] for this

and references). See [7, 9] for some examples of more recent applications to

continued fraction theory. Our interest in chain sequences stems from the use-

ful role they play in the study of orthogonal polynomials and their zeros (see

for example [1, 2, 3, 5, 6, 12]). This connection is not surprising in view of the

close relation of orthogonal polynomials to continued fractions. In their origi-

nal form, chain sequences were not restricted to be positive and for the more

general case the above definition must be modified by changing the inequalities

to weak inequalities. For the applications to orthogonal polynomials, only pos-

itive chain sequences are considered so we adopt the more restrictive definition

above and will not use the adjective "positive".

The numbers gn above are called parameters of the chain sequence and {gn}

is a parameter sequence for {an}. Every chain sequence has a minimal param-

eter sequence {mn} uniquely determined by the condition m0 = 0, and it has

a maximal parameter sequence {Mn} which is characterised by the condition
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[13, p. 82]

MXM2---Mn

(1'2) ^{(\-Mx)(\-M2)--\\-Mn) =

If MQ > 0, then for every g0,  0 < g0 < M0, there is a unique parameter

sequence {gn} such that

(1.3) mn< gn<Mn,       n>0.

It is frequently useful to know explicitly more than one parameter sequence

for a given chain sequence but it is rare that more than one or two are explicitly

known. In some instances, a non-minimal parameter sequence is known but

the minimal parameter sequence is what is needed. In this paper, we will show

how all parameter sequences can be found for any chain sequence for which

one parameter sequence is explicitly known.

2.  NON-MINIMAL PARAMETERS KNOWN

We first introduce the following notation: Let g — {gn} be any parameter

sequence and define Pn = Pn(g) by

<>■<>   w-i.  w-,i-^:::fr-v,)-  ■*•■
Now suppose that (1.1) holds with g0 > 0. Define the sequence {Sn} and the

extended real number S by

« oo

(2.2) S_x=0,       Sn = J2Pk       (n>0),       S = J2Pk-
k=0 k=0

Next define hn — hn(t) by

P.3) yfl-i+fj^,,;       „>0.

SinceX, - gllSll_l = (1 - gJSM , we have

1 + tS
(2-4) l-W = -fT7f^(l-S„).

Thus (1 - hn_x)hn = (1 - gn_x)gn = an   (n > 1) and it is readily verified that

0 < h0 < 1 and 0 < hn < 1   (n > 1) if and only if

(2.5) -^<i<oo.

(This includes the limiting case S = oo.)

Thus with the restriction (2.5), (2.3) yields all parameter sequences {hn} for

the chain sequence {an}. In particular, h0(oo) = 0 so we get the minimal

parameters for / = oo . On the other hand, we have

(26) LA-=1+tf-'.-ga-

(2 7) 7> (A) =     (1+?)(1+^}    P (g).

[     > «(n>     (l + tSn)(l+tSn+x)  "(8>
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Recalling the criterion (1.2), we see we will have the maximal parameters if

t — - l/S. This remains true if S = oo (in which case of course hn(0) = gn is

the n th maximal parameter).

Example. Take an — a where 0 < a < 1/4. Then an = (1 - g)g with

g = [l + v/1 -4a]/2, n > 1. Referring to (2.1)-(2.3), we have

„ l + yT^ta Rn+> - 1

P"-R>       R- l-Jl-4a'       S" = -R^T-

Hence all parameter sequences for {a} are given by

(2.8) M,) = i¿4Zg *-' + (*"-'>',       o<,<oo.

The corresponding maximal parameters Mn = hn(0) = g and the minimal

parameters mn = hn(oc) were given by Wall [13, p. 83].

In the special case a = 1/4, (2.8) reduces neatly to

(2'91 1">=2[i + 1V+'.M-

3. Minimal parameters are known

Suppose next that

(3.1) an = (\-mn_x)mn,       n>\,

with mQ - 0, 0 < mn < 1   (n > 1) and

mx---mn
< oo.

(3-2) ff E(i_mi)...(1_Wfl)

(If the series in (3.2) diverges, the minimal parameters are also the maximal

parameters so the chain sequence has only the one parameter sequence.)

Now define a second sequence {bn} by

(3.3) bn = an+x,       n>\.

Then bn = (1 - gn_x)gn where

(3.4) gn = mn+x,       n>0,

so {6n} is a chain sequence with the non-minimal parameter sequence {gn}.

Thus we can define {Sn} and S by (2.2). In particular, we have 5 = 1 + o,

where a is given by (3.2). For each / satisfying (2.5), (2.3) defines a param-

eter sequence for {bn}. As before, hn(-l/S)(= Mn+X) is the «th maximal

parameter for {bn} while hn(0) — gn — mn+x . Also, we have

(3-5) «¿i-*.-<l-*.-i>*.'.        «>!>

where

mn+x<hn(t)<Mn+x       for -i<^<0.
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Further, h0(t) = mx/(\ + t) so if we define «_, by

(3.6) h_x = -t,        -£</<0,

then

(1 -h_x)h0 = mx =ax.

Combined with (3.5), this shows that {hn(t)}™=_x is a parameter sequence for

{a„}^=x ■ Pulling all of this together, we set r = — t, fn(r) = hn_x(t), and we

can state in summary:

Let {an}c^=x be a chain sequence with minimal parameter sequence {w„}^0

satisfying (3.2). Let

(3.7) S .=0,       S0=l,       S=l+V--1--It--,        «>k
1 ° " ^(l-m^-'-^-m^'

Then all parameter sequences for {an} are given by {fn(r)} where

(3.8) f0(r) = r,fn(r)=l~'Sr"s-imn,        0 < r < I.

An example in which Sn can be found in closed form is given by taking

2/2-12« + 3 . . «22« + 3
a„ = -—, r i —r^—        wltn m„ = —■-r-

16«(«+1) "      4(« + l)3

All parameter sequences are then given by (3.8) with 0 < r < 3/4 and Sn —

(4/3)(« + l)(« + 3)(« + 2)"2.

4. Applications

If {fin} is any sequence, put

f f ■■■ f
(4 1) n(f) =--^--2-
[  ' "U)   (i-/,)(!-f2)--(i-f„y

Then if {gn} and {hn} are any two non-maximal parameter sequences for the

same chain sequence, (2.6) shows that

g„(g) = (i + 0(i +¿s.)
«^o7r„(«) "       (1 + tS)2

where S (given by (2.2)) is finite and t - (gQ - «0)/«0 ■  (We had previously

known that lim^^ gjhn = 1 .)

Convergence of certain series involving n (m), where m is the minimal

parameter sequence, figures prominently in the question of determinacy or in-

determinacy of the Hamburger moment problems associated with orthogonal

polynomials (see [5]). In many cases, we do not know the minimal param-

eter sequence but (4.2) shows that all non-maximal parameter sequences are

asymptotically equivalent.

(4.2) lim -^^ = K    ,/v _2  v > 0,
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As a second application, consider the problem of explicitly constructing a

family of orthogonal polynomial sequences which are orthogonal over [0, oo)

with respect to measures which differ from each other only by the size of the

mass at the origin. This construction was described in [1, Th. 2] and is especially

well suited to the case where the orthogonal polynomials are associated with a

birth and death process. Specifically, let {Qn(x)} be defined by the recurrence

formula (see [8])

(4.3) -xQn(x) = A„ß„+1 (x) + (kn + pn)Qn(x) + PnQn_x(x),

ß_,(*) = 0,    Q0(x) = l,       X(>0,    pi+x>0   (i>0),    p0>0.

These polynomials satisfy an orthogonality of the form

¡°° Qm(x)Qn(x)dy,(x) = /' \\ßn 3mn.
Jo V    \-l

Let us consider here the case where we have a reflecting barrier at 0—that is,

assume p0 — 0. (If pQ > 0, the procedure becomes a bit more complicated.)

We then consider the corresponding "dual process". That is, consider the

process obtained from (4.3) after replacing kn and pn, respectively, by kn+x

and pn+x . The resulting orthogonal polynomials are the "kernel polynomials"

which are orthogonal with respect to the distribution xdy/(x). Consideration

of the corresponding monk polynomials and the resulting recurrence relation

leads to the chain sequence

(4'4)     (v.+Mi+^.r0"*-1*-'   8n = K^:

Next obtain all other parameter sequences for (4.4). That is, put

P"( ]        \+tSn    '

where Sn is given by (2.2), and then define

W = P„K>       A*0(0 = 0,       pn+x(t) = — pn+x.
"n

Now consider the orthogonal polynomials defined by (4.3) after replacing Xn

and pn by kn(t) and pn(t), respectively. Then the following is true [1, The-

orem 2]: for t = -l/S (corresponding to the maximal parameters of (4.4)),

the corresponding polynomials will be orthogonal over [0, oo) with respect to

a distribution dtp(x) where <p is the solution of a determined Hamburger mo-

ment problem and is continuous at the origin. For all other finite values of /

(corresponding to all other non-minimal parameter sequences), the correspond-

ing polynomials will be orthogonal with respect to the distribution which is

obtained from dtp(x) by adding positive mass / at the origin, the mass being

given by the formula

(4.5) 7 = (i+054T[9'(oo)-9»(0-)].
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Note that the moment problem associated with the original orthogonal polyno-

mial sequence {Qn(x)} could be indeterminate. Thus if a polynomial sequence

is orthogonal over [0, oo) with respect to the solution of an indeterminate mo-

ment problem, it is also orthogonal with respect to a distribution which is ob-

tained by adding mass at the origin to a solution of a determined Hamburger

moment problem.

The above is a more efficient and generally applicable method of determin-

ing this family of orthogonal polynomials than that used in [4]. For other ap-

proaches to the problem of determining orthogonal polynomials when masses

are added to measures under various conditions, see [10, 11].
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