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Abstract. Let J(ß,T) = f[ (72x<pi<<x+x/TloZP ~ x/T)2dx/x2, where the

sum is over prime powers. H. L. Montgomery has shown that on the Riemann

hypothesis, there is a positive constant Co such that for each ß > 1 , J{ß,T) <

Co/Hog2 T/T , provided that T is sufficiently large. Here we prove a slightly

stronger result from which we deduce a lower bound of the same order.

1. Introduction

In 1943 A. Selberg [7] proved that if the Riemann hypothesis (RH) is true,

then

J{ß,T) = J    (w (x + j) - W(x) - ^)2x~2dx

« !5¿I

for fixed ß > 1 and T > 2; here y/(x) = Y^,n<xA(n), where A(n) = logp if

n — pm with p a prime number and m > 1, and A(n) = 0 otherwise. H. L.

Montgomery (unpublished) later made the ß dependence explicit by proving

that on RH there exists an absolute constant C0 such that, for each ß > 1,

(1) J(ß,T)<C,^J-

as T —* oo. Proofs of this subsequently appeared in [1], [5], and [4]. Our

object here is to prove a stronger result for J(ß, T) on RH which immediately

implies ( 1 ) and, moreover, shows that apart from constants ( 1 ) is best possible.

We shall use the standard symbols <, » O, o, and ~ and, unless other-

wise indicated, all implied constants will be absolute.

Theorem. Assume the Riemann hypothesis. Then there are absolute constants

C2 > C, > 0 such that for each ß > 0,

C, î^ < J(ß + 2, T) - J(ß, T) < C2^-

for all sufficiently large T.
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Corollary. Assume the Riemann hypothesis. Then there are absolute constants

D2 > Dx > 0 such that, for each ß > 1,

Dx^<J(ß,T)<D2^

for all sufficiently large T.

The Theorem should be compared with a result of Gallagher and Mueller [ 1 ]

(also see [3]) which asserts that RH and the pair correlation conjecture together

imply that for fixed ßx > ß0 > 1,

J(ßl,T)-J(ß0,T) = ((ßx-ß0) + o(l))1^       (as r-oo).

Since for 0 < ß < 1 one also has (unconditionally) that

(2) j(ß>T) ~ LllLL       (asT^oo)

(see [1]), we see that on the above hypotheses

{ (1/2 + ß- ß2/2)^X        ifO<0<l,

l 2^ if /? > 1.

Our proof will actually show that if ß > 0, then

2 2

•3^|^ <J(ß + 2,T)- J(ß , T) < 21.65^|^

for all sufficiently large T. It is also possible by our method to show that

(/?, - ß0f-^ « J(ßx , T) - J(ß0,T) « (ßx - ßQf^-

for ßx > ßQ > 0 as long as ßx - ß0 > 6 - 2\/6 = 1.10102... . It is doubtful,

however, whether one can obtain this for arbitrarily small differences /?, - ßQ

on RH alone.

2. A LEMMA

We prove the Theorem by relating J(ß ,T) to averages of the function

F(a,T) =(¿ log t)~      £    r-^'W-/)

introduced by Montgomery [6]; here a is real, T > 2 , w(u) — 4/4 + u , and

y, y' denote the imaginary parts of zeros of the Riemann zeta-function. We

shall then require the following result which generalizes and strengthens Lemma

A of [2J.
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Lemma. Assume the Riemann hypothesis and let

c«,,n=ifiogrV'   V   Ainffr-/)logry

Then for a > 0, ß real, and T > 2,

(3)    a(l-lG(|,r)) < j +U F(a,T)da<a(G(a,T)+l-G(^,T)\ .

Proof. The proof of the lower bound in Lemma A (which corresponds to a = 2

here) extends in a straightforward way to give the lower bound in (3).

On the other hand, the upper bound in Lemma A generalizes to 2aG(a, T)

which is not as good as the bound in (3).

To obtain the present upper bound define Kb(u) = max(l - \u\/b, 0), b > 0,

and consider the function

Ra(u) = Ka(u) + l-Ka/2(u - a/2) + l-Ka/2(u + a/2).

Defining the Fourier transform of f(x) by

/OO

f(x)e(-xco)dx,
-oo

where e(u) = e "'", we have that

sinnbtox 2
KAco) = b .

Thus

~ .   ,        \ /sinnaco\       1 /sin naco/2\
RJco) = a <    -     +-cos nato   -ji—     > ■

"K   '        \\   naco   )       2 \   naco/2   J  j

Now clearly Ra(u) > 0 for all u, and Ra(u) = 1 for \u\ < a/2. Furthermore

(see [5]), F (a , 7*) > 0. Hence

r(ß+a/2)+a/2

/       F(a,T)da= / F(a,T)da
Jß J(ß+a/2)-a/2

/oo
F(a,T)Ra(a-(ß + a/2))da

-OO

x w(y - y

T ,__,A       v-    ri(ß+aß)(y-y')%  ((y-y')iogT'
2n

G(a,T)+l-G(a/2,T)

This proves the result.
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We require the lower bound of the lemma for a = 2 - r\ and the upper bound

for a = 2 + r\, where n > 0. Montgomery [6] has shown that on RH,

G(a,T)

for 0 < a < 1 as T —► co . Hence

-ß+2-r,

1      a\

(4) /Jß
F(a,T)da>(l+o(l))[~cl(t1) (as r —► oo ),

where cx(n) —> 0 as z; —> 0   . For the upper bound we use the inequality

C7(7 + z/,r)<4/3 + c2(z/) + o(l)

as r —> oo (y = 1  or 2 ), where c2(r¡) ->0 as z/ —► 0+ ; these follow from

Lemma 7 of [2]. We then obtain

rß+2+tl

(5) / F(a,T)da<(l+o(l))(4 + c3(r]))       (as T - oo ),
7/s

where c3(n) —> 0 as z/ —» 0+ .

3. Proof of the theorem and corollary

We begin by quoting two results from Goldston [3]. We remind the reader

that the Riemann hypothesis is assumed throughout this section.

Let g(x) be a complex valued function such that g(x) < (1+x2)-1, g(co) <

(1 + co2)~l , and g(co) -0 for co < 0, and define

(6) H±(n,U)= f
Jo

¿2g(±(t-y)ß)dt,

where the sum is over the ordinates of the nontrivial zeros of Ç(s). Then by

Equations (5.2) and (5.3) of [3],

(7) H±(ß,U) = U j°° F(a,U)\g(a)\2da + o (U)

for \fi - \/2nlogU\ < CloglogC/, where C is an arbitrary positive constant.

Furthermore, by Lemma 5 of [3]

/    (V(eu+â)- w{e')-(eS- l)e"fe~"\e(¿;)\   du

= tinv
/:

sinfz Y.S((t-y)v) dt

+ 0(6) + 0(v263'2\og\/6)

1 Lemma 5 contains two typographical errors:  " T > 2 " should be removed and the factor

(y/(eu+s) - y/(eu) - (e6 - \)e") in (4.2) should be squared.
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uniformly for v > 1 and 0 < 6 < 1/4. If we set e   = 1 + 1/7', v = \/2n log T,

and x — eu, we may rewrite this as

(8)

/   ^{x+t)-^{x)-y) g
log*

logr
dx
~~~2

SinfZ J2s(((-y)logr
2rc

+ E«(fr-o!|F dt+0[-

We now choose a pair of functions g, g for which the above conditions

hold and such that g approximates the characteristic function of the interval

[ß, ß + b] from below, with ß > 0. More specifically, we take g — 0 off

of [ß, ß + b], g = 1 on [ß + n, ß + b - n], and |g| < 1 otherwise, where

0 < r¡ < b/2 is fixed. (Such a pair may be constructed explicitly by a linear

change of variable from the pair defined in (3.6) of [3].) With this choice of g

in (7) we immediately obtain

fß+b-rj rß+b

(9)   U F(a,U)da + o(U)<H±(ß,U)<U F(a,U)da + o(U)
Jß+n Jß

for \fi - \/2n log U\ < Clog log U. The same choice in the left-hand side of (8)

leads to the inequalities

J(ß + b-r1,T)-J(ß + n,T)

;i0)
*/>£)-•&-# g

log*

logr
dx

2

<J(ß + b,T)-J(ß,T).

We now obtain the lower bound of the theorem. Taking b = 2 in (10) and

using (8), we see that

J(ß + 2,T)-J(ß,T)

>Wt[
ti Jo

sinfZ
£s((í-y)

logr

2n

+ £«(*-•>¥)   á,+0(7)

where 0 < 8 < n . Now (sin(áz/2)/Z)   is monotone decreasing for 0 < t < 6T,

so by (6) this is

2
2.    2^/sin§07^   /„   ^logT  ûr2\ ,  „   /logr,

> - log T
n 6T K 2n

,8T)+H_
2n

")}
0T\\ + O
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Next, using the lower bound in (9), we find that this is

4(sinrJr7r/2)2log27 fß+2^

- n 9 T

Finally, by (4) we have that

rß+2-n /log2 r\
/ F(a,dT)da + oi-?y-) .

J(ß + 2,T)-J(ß, T) > i^^^(2/3-c^))-,^^).

The optimal choice of 8 is the unique solution (on (0,7t)) of the equation

tan 0/2 = 8, namely 8 = 2.33112... . Using this and taking n sufficiently

small, we obtain

J(ß + 2,T) -/(/?,T) > (.307 + o(l))
log2 T

>.3
log2 T

forß>0 and all T sufficiently large.

To obtain the upper bound we again take g and g as above (although b will

be different). By the growth condition on g and the estimate ¿~2u_1<y<u 1 <

log(|zz| + 2), we easily obtain the bound

e4«-^)
Using this, we find that

2

I 'sinfZ
t e4±(t-y)logr

2zr

« log(|i| + 2).

dt

dt

riog3r    t

< çj;k^m dt

(5 log log 7"]    r2kT

♦ ri::Tp (,-»¥) <-^&

i j
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The bound for 77± from (9) is applicable in this range of k and leads to

<(1+.

+ 0{t

If we now set b — 2 + 2r\ and use (5) we find that this is

619

__±   -v_,-rx.-„-   _. -

Í    1      C^b 4 t510^7"]    _.    fß+b , )
o(l)) I— j       F(a,T)da+-     £     lkj       F(a,2kT)da\

<d + o(D) {±±
c3(2n)  | 4(4 + c3(2z?))|

47
+ + o

T

<
17 + 5c3(2n) + o(l)

as 7 —> oo. Thus, we have shown that
2

(11) L 'sinfZ
t

X>(±(f-y) log 7

2tt
rff

<
17 + 5c3(2n) + o(l)

as 7 —> oo .

We now combine (8), (10) (with b = 2 + 2n ), and (11) to obtain

J(ß + 2 + n,T)-J(ß + r1,T)
2 •

<^log27f
sinfZ

t

Z^-rtg)   +•£'{<>-<)*£) dt

[T

<^(17 + 5c3(2z/) + 0(l))^

< (21.646+ 7c3(2z/) +o(l))
logz7

'3V-'" ' ""'"    7

as 7 —► oo . Taking n sufficiently small, we see that

J(ß + 2 + r¡, 7) - J(ß + n, 7) < 21.65
log'7

for /? > 0 and all sufficiently large 7. This gives the upper bound and com-

pletes the proof of the theorem.

We now prove the corollary. For ß > 2 the corollary follows immediately

from the theorem. Suppose then that 1 < ß < 2. By (2) and the fact that

J(ß, 7) is an increasing function of ß we have

1 log" 7

2 7
7(1,7) </(/?,7)< 7(3,7).
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Thus,

/(A,7)»^»^l0g2r
T        r    T

and, by the theorem,

J(ß, 7) < (7(3, 7) -7(1, 7)) + 7(1, 7)
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