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A FINITE-ENERGY BOUND ON THE APPROACH

OF A DIFFUSION TO THE ZEROS OF ITS DENSITY

timothy c wallstrom

(Communicated by George C. Papanicolaou)

Abstract. Since the drift coefficients of a finite-energy diffusion are undefined

on the nodes, or zeros of the density, an important problem has been to show

that the sample paths stay away from the nodes. In this paper it is shown that if

the drift is locally a gradient and smooth on the complement of the nodes, and

if the density is smooth, then the closest approach to the nodes can be bounded

solely in terms of the time-integrated energy.

If ¿l(t) is a diffusion process with density p, forward drift ft, and backward

drift bm (to be defined below), then £ is said to have finite energy if, for any

finite interval [0, T],

(1) /   E\[(b2(i(t),t) + b2Mt)A))]dt<oo,
Jo

— 112
where E is the expectation. This criterion permits the drifts to diverge as p

near the zeros of the density, or "nodes". Diffusions with singular drifts of this

type arise naturally when one tries to treat the time-forward and time-backward

processes on an equal footing. In particular, these drifts arise in the theory of

stochastic mechanics, which is an interpretation of the time-reversal invariant

equations of quantum mechanics in terms of diffusion theory [5].

Because of their severe drift singularities, finite-energy diffusions are not

amenable to construction by the usual methods. In recent years, however, Carlen

[2,3], Nelson [4], and Zheng [7] have all given methods for constructing such

diffusions, subject to various regularity assumptions in addition to (1). Fur-

thermore, it has been shown, under the additional assumptions of continuity of

the density and of the drifts away from the nodes, that the sample paths of a

finite-energy diffusion never reach the nodes [1, 4, 7, 8].

In this paper we show that if one also assumes that the drift is a gradi-

ent, a condition which holds automatically in stochastic mechanics, the closest

approach of the paths of the diffusion can be bounded in terms of the time-

integrated energy.   This is an improvement over the best previously known
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results, in which potentially divergent integrals of the derivatives of ft and bt

also enter into the bound. The present result is particularly satisfying in that it

bounds the nodal approach in terms of the same quantity whose finiteness was

assumed in order to construct the diffusion.

The proof given will carry over to any Riemannian manifold M, but we

restrict ourselves to R" in order to simplify notation. Let £(i) be a diffusion

process on R" , with density p, forward drift ft, backward drift bt, and co-

variance equal to the metric tensor. The backward drift bt(x,t) is defined

as limdt.QEx''[dt¿;(t)/dt], where EXJ is the conditional expectation given that

Ç(t) = x , and dtÇ(t) = C(t)-¿¡(t-dt). It is often useful to introduce quantities

whose time-reversal properties are transparent; accordingly, we define the os-

motic and current velocities u and v by u = ^(ft-ftj and v = j(b+bt). This

implies that ft = v + u and ft, = v - u. It can be shown that u — VR, where
1R

R is defined by p = e and that v is the current velocity in the continuity

equation for the density,

(2) %--*•{»*).

(In stochastic mechanics, this equation can be derived from the Schrödinger

equation for \p, with the identification p = \ip\2 and v = V(Imlog^).) We

let 3sl and f?t denote the forward and backward nitrations, respectively; these

are generated by the t\(s) with 5 < t and s > t, respectively. This is the

standard cast of characters in the theory of finite-energy diffusions; see [5] for

more details.

We can describe the process Ç by either a forward or backward stochastic

differential equation:

dcl(t) = b(C(t),t)dt + dw, or

U d¿(t) = bt(¿;(t),t)dt + dtwt,

where w(wf) is a forward (backward) Wiener process, and where backward

increments are defined (formally) by

dtF(t) = F(t)-F(t-dt).

Let A he defined by

(4) A = i[   [ (u2 + v2)pdxdt.
Jo   Jm

This is the same as (1), so £ is a finite energy diffusion if A < 00.

Our proof is closely patterned after that in [4], in which Nelson introduced

the beautiful idea of considering the process R(Ç(t),t). This procedure leads

to quantities AR(Ç(t), t) and AS(Ç(t), t), whose time integrals cannot immedi-

ately be bounded in terms of A . Note, however, that for any smooth F(x, t),

the stochastic process F(£,(t), t)  satisfies the following stochastic differential
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equations:

dF 1
dF = —dt + b-VFdt + VF-dw + -AFdt,

at 2

dF 1
dF = -—dt + b-VFdt + VF- dwt - -AF dt.

* at 2

Subtracting the second equation from the first, and recalling that ft - ftt = 2u,

we obtain

(5) A7^ dt = dF - dmF -2u-VF dt -VF ■ dw + VF ■ dtwt.

The dF - dtF term will disappear when we integrate, and if F is 7? or S,

the remaining terms can be bounded by A . In this way, we will bound the time

integrals of AR(Ç(s),s) and AS(Ç(s),s) in terms of A .

In order to apply Itô's lemma to the processes R(Ç(t), /) and S(Ç(t), t), we

must first show that the process c¡(t) never reaches the nodes. In [4], Nelson

proved this for finite-energy diffusions on a compact manifold. His result can

easily be generalized to noncompact manifolds. Consider the process stopped

upon exiting some sphere

Vd = {x:\x\<d}.

Then the methods of [4] suffice to show that the particle never reaches the

nodes before exiting Vd (see also [8]). We also know that, for a finite-energy

diffusion, one can choose d large enough that the probability of Ç(t) exiting

Vd is arbitrarily small. (Simply bound each term in the stochastic integral for

£(t) separately.) Thus, the probability of the sample paths reaching the nodes

is zero.

Theorem 1. Assume that A = j f0T JM(u +v )pdxdt < oo, and that v is a

local gradient: v = VS. Assume also that u and v are smooth away from the

nodal set. Then, given e > 0, there exists 3 > 0, depending only on A and the

initial condition p(x, 0) = p (x), such that

1 -£.(6) Pr{iinfT]p(Ç(t),t)>ô}>

Proof. Since J p°(x)dx = 1, there exists 3X > 0 such that if U = {x: p°(x) <

3X} , fvp (x) dx < e/2. From this we infer the existence of A, such that

(7) Pr{R(i(0),0)<-Xx}<e/2,

where R is defined as ^ log/?.2

Now consider the process R(Ç(t) ,t). By the Itô calculus,

/OX ,„ OR      * _rt i. 1    »   T.   J8 dR = —dt + VR-dÇ + ^AR dt.
dt 2

Taking the gradient of the continuity equation and dividing by p, we obtain

(9) ™=-VR-VS- l-AS.
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When substituted into the expression for dR, we will obtain terms in AR and

AS. Using equation (3) to substitute for AR and AS, we obtain

dR = {(dR - dmR) - {(dS - dmS) + (-u-VR + u- VS) dt

(10) - {(VR -dw-VR- d,wt) + {(VS -dw-VS- d„wj

+ u-vdt + b-VRdt + VR-dw.

This is a local relation, so S need not be globally defined. The time integrals

of (dR - dtR) and (dS - dtS) vanish, and we find that

(11) R{t{t),t)-R{i{0),0) = j ' u-vds+X-jl' b.dw-^j'' K-dtwt.

Let X(t) be defined as R(Ç(t),t) - R(¿¡(0),0). Then X(t) is the sum of three

integrals, which we label consecutively as X((t), for i - 1,2,3.

By Chebyshev's inequality,

f ) p\u-v\dxdt

(12) Pr     sup  \Xx(t)\>x\<J-^-<T
'€[0,r]

- X'

2
Since X2(t) isa 3dl -martingale, X2(t) is a nonnegative ^-submartingale, and

/   [\{-b\2pdxdt

by Doob's submartingale inequality,

j\\b\2pdxdt

(13) PH   sup  \X2(t)\>X\<J0 J        -<-2.
[te[0,T] J X X

A similar estimate holds for X3(t). Therefore,

(14) PrJ ̂  \R(í(t)A) -R(í(0),0)| >aI<Q + ̂ J A.

Note that as X —<• oo, the bound will go as A/X.

Choose X2 > 0 such that (l/X2 + 2/X2)A < e/2. Combining this with our

previous estimate, we find that

PrJ   inf R(Ç(t),t)<-X.-xA <e,

which implies that

Pri  inf
l'S[0,

af  p(Ç(t),t)<e~2(h+h)\ <e.   D

Remarks. (1) If the process is stationary, then dR/dt = 0, and AS does not

enter into the calculation of dR. In this case, therefore, it is not necessary to

assume that v is a gradient. Note also that if u • v = 0, and in particular, if

u = 0,then Xx(t) vanishes, and the bound falls off as \/X   instead of \/X.

(2) Nowhere have we assumed that p must have nodes or singular drifts.

Even when p is always strictly greater than zero, if p(x) —► 0 as \x\ —> oo, this
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result may be useful in bounding the probability that ¿¡(t) ever leaves a sphere

of a given radius.

(3) The usual application for bounds such as that of Theorem 1 is to es-

tablish the existence and uniqueness of finite-energy diffusions. Note, however,

that such bounds are generally useful in taming the singular drifts, which can

interfere with efforts to establish even simple assertions analytically. If we can

control the probability that the particle ever gets close to the nodes, we can ex-

ploit the regularity of the drifts away from the nodes. For an example in which

the bound of this paper is used in this manner, see Theorem 5 of [6].
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