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MEAN ERGODIC THEOREMS FOR NONLINEAR OPERATORS

RAINER WITTMANN

(Communicated by William J. Davis)

Abstract. The mean ergodic theorem is shown for nonlinear operators  T:

K —> K with  ||r^ + 7>>|| < H-X +>>||  for any x,y e K where K may be an

arbitrary subset of a Hubert space H .

1. Introduction

Let K be a subset of Banach space 77 and T : K —► K be a mapping. We

are concerned with the mean ergodic theorem for such nonlinear operators, i.e.

the norm convergence of

l       "

An(X)'-=-^T[J2T'X (XGK).
i=0

Such results are very well known for linear contractions. In order to general-

ize such results to nonlinear mappings the most natural constraint on T is to

assume that

(1) \\Tx-Ty\\<\\x-y\\       (x ,y G K).

Such mappings are called nonexpansive. Unfortunately there exist examples

of nonexpansive operators where K — 77 is a Hubert space and T is nonex-

pansive with nonempty fixed point set but the mean ergodic theorem does not

hold (although Anx converges weakly). The speed limit operators of Krengel

and Lin [6] are such examples if the speed function is chosen appropriately.

Moreover, these operators satisfy several additional natural conditions. On the

other hand Bâillon [ 1 ] was able to prove the mean ergodic theorem for nonex-

pansive operators T on a convex subset K of a Hubert space if — x G K and

T(-x) = -Tx for any x G K . Clearly the last condition and (1) imply

(2) \\Tx + Ty\\<\\x + y\\       (x,yGK).
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In this paper we show that (2) alone guarantees the validity of the mean ergodic

theorem if 77 is a Hilbert space. Note that (2) does not even imply continuity.

On the other hand, if -x G K for any x G K, then (2) implies (1). In

fact, \\Tx + T(-x)\\ < \\x + (-x)\\ = 0, implies T(-x) = -Tx and therefore

||Tx- Ty\\ = \\T(-x) + Ty\\ < \\x -y\\. But also in this case our result is better

than that of Bâillon because we need not impose any convexity assumption on

K.

Hirano and Takahashi [4] have replaced ( 1 ) by the weaker condition

(!') \\Tnx-T"y\\<aJx-y\\       (x,yGK),

lim a   = 1,
n—*oo    "

and proved some weak convergence results for Anx . If -x G K and T(-x) -

-Tx then (l') implies

(2') \\Tnx + Tny\\<an\\x+y\\       (x,yeK),

lim a   = 1 .
n—oo    "

We will show that the mean ergodic theorem still holds if only (2') is satisfied.

Even the results about weak convergence of Anx for nonexpansive mappings

imply that the limit is a fixed point. As Example 3.2 shows this need no more

hold under our assumptions even if T is continuous. Unlike the case of non-

expansive operators the fixed point set need no more be convex, but it is always

nonempty if AT is a convex and closed set. In this case the unique point x0 G K

with ||x0|| = inf{||x||: x G K} is always a fixed point because ||Ta:0|| < ||x0|| by

(2).
For further information on nonlinear ergodic theorems the reader is referred

to Brück [2], §9.3 of Krengel [5] and the literature cited there.

After having finished a first draft of this paper Professors U. Krengel and

M. Lin drew the author's attention to the unpublished preprint [3] of Djafari-

Rouhani and Kakutani. There, the particular case 3k = 0 of our main re-

sult Theorem 2.3 is stated, with the additional assumption \\Xn+l - ^m+1|| <

\\Xn - Xm\\ for any n,m G N, but since the proof was incomplete, [3] was

never published (although it contains another important result which was later

generalized in [6]).

2. Main stream

In the sequel 77 will always be a Hilbert space with inner product (•, •) and

norm || • || .

Theorem 2.1. Let K c 77 and T: K —> K be a mapping satisfying

(i) ||7\x + 7>||<||x + v||       (x,yGK).

Then for any x G K

1      "
Ax :=-r Y^ T'x

is norm convergent.
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Theorem 2.1 is a special case of

Theorem 2.2. Let K c 77 and T : K —► K be a mapping satisfying

(i) ||Tnx + T"y|| <an\\x + y\\       (x ,y G K),

lim a„ = 1 .
n—»oo    "

Then for any x G K

1      "
Ax :=-ry^T'x"        « + 1 ¿-*

i=0

is norm convergent.

Theorem 2.2 is an immediate consequence of

Theorem 2.3. Let (Xn) be a sequence in H such that

(i) \\Xn+k + Xm+X<\\Xn + xJ + h       (m,n,kGN)

with

(ii) Urn 3k =0.
k—»oo

Then the sequence An defined by

1   "
An '■= - ¿2 Xi

i=l

is norm convergent.

Remark. Clearly Theorem 2.3 contains also the mean ergodic theorem for sta-

tionary processes in the wide sense (cf. [5], p. 32).

Proof. From (i) and (ii) we see that for any m, n G N

Hmsup \\Xn+k + Xm+k\\ = lim inf \\Xn+k + Xm+k\\ = inf \\Xn + XJ
fa_»OO —^OO Kkz.1V

Taking m = « = 1 this implies

ne := inf{« € N: ||Xmi||2 < \\Xmf + e/2   Vm2 > m, > «J < oo.

For any e > 0 we set

k :=inf{kGN:3<e   V«>Â:}.

Since

(^.^j = i(ii^+^ii2-ii^ii -ii^ii)

we obtain for any m, « > «£ and k > k£

(!) (Xn+k>Xm+k< = l(WXn+k+Xm+kW    ~ \\Xn+kW    " WXm+k II   )

<3(ll^ + ̂ ll2 + £-ll^ll2 + f-H^II2 + !)

= (Xn>XJ + £-
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For any e > 0 we define

KE-={Î2t,Xne+i:pGN,    0<t,<l,    f>=l},
1.1=0

h = inf Hzl
e     zeKe

i'=0

and choose p£ e N, (^ /)0<(<ft in [0,1] such that Y^Lq^j = 1 and

(2) L     I,¡        »! + ¡
i=0

<7£ + e.

Using ( 1 ) we obtain for any e > 0 and k > k£

|2P

i=0
E,        VE, i    nc+k+i -   ¿_j te,it£,j\Xni+k+i>Xnc+k->rjl

i,j=0

Pu

/J=0 /J=0

2

/=0

+ £.

Together with the convexity of x —► x   and (2) this implies

(3)

where

KJ   </, + «       (meN,e>0)

££+m   pc
1

z„ .„ :=
s,m        m + i 7 s   7 4   r. .ii     n.+k + i '

k=kc (=0

Note that e —► 7£ is decreasing. Hence

I a :— lim 7„'o e^0

exists and for any a > 0 we can define

en:=sup{e>0:/e >/„-<*}.

Now let a > 0 and 0 < 3 < e < ett be given. Since j(ze m + zs n) g Ke we

have

\\z(h,m+^,„)ii2 > /. > {a,+/0 - *) > ï(/;+/,-«)■

Combining with (3) we obtain

2IK,,J2+2||^,J2-|Km + ̂ ,J2 < 27£+2£+27á + 2¿-27£-27á+2a < 4e+2a.

By the parallelogram identity the left-hand side of the last inequality equals

'\z. „ - zs „||  . Thus we have shown
-e.m      *S,n>

\ze,m*-zSn\\   <4e + 2a       (0<ri<£<£(<, m,«eN).
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Since 77 is a complete space there exists z e 77 with

(4) ||z£m-z||2<4e + 2a       (0 < e < ea, m G N).

From the definition of z£ m it is easy to see that

ne+ke+m pc-l pt

(m+l)ZE,m-        E       Xi = E r.Xn£+ki+, + I2SiXne+ks+m+i
i=nc+pe+ke (=0 (=1

with 0 < r¡, s¡ < 1 if m > p£. Hence

1
\v       —A        \\ <

m +
-   2^sup||XJ| + («£ + /c£)sup||Xn|
1   \        n£N neN

Letting m tend to infinity (4) now yields

lim sup \\Am - z||2 < 2 sup ||z£ m - zf + 2 lim sup \\Am+x - z£ J|2 < 8e + 4a + 0.
n—>oo m£N ' n—>oo

Since a > 0 and e > 0 can be made arbitrarily small the assertion follows.   D

3. Examples

The first two examples below are quite pathological. Their main purpose is

to show the difference to the case of nonexpansive operators.

Example 3.1. Let p be a cr-finite measure and L+ be the convex cone of all

positive functions of the Hubert space L2(p). Further let <p: L2 —► [0,1] be

an arbitrary function. Then the mapping T.f := 4>(f)f clearly satisfies

IV+7;s||<||/ + g||        (f,gGL2+).
2

On the other hand, even when L+ is one dimensional, i.e. p is a point mass,

one can easily give examples of functions <f> such that the fixed point set is not

convex and T,  is not continuous. Moreover, cp may be chosen such that T.

is order preserving on L+ .

Even if T seems to be nice the ergodic averages may behave pathologically :

Example 3.2. We define

_. .      í'I}^¡1(x2,xx)       if(x,,x2)eR2\{(0,0)},
T(xx,x7) = {     xt+x*

lO if(x,,x2) = (0,0).

Again we have

\\T(xx,x2) + T(yx,y2)\\ < \\(xx ,x2) + (y,, y2)||       ((xx ,x2),(yx ,y2) G R+)

2
and T is continuous on R+ with (0,0) as the only fixed point.

On the other hand, if x > 0 the averages

—1—Tt1(x,o)
n+1^     v       ;

(=0

converge to (ix, \x) which is not a fixed point.
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We now turn over to more natural examples.   In the sequel p will be a

(T-finite measure. The following lemma is basic:

Lemma 3.3. Let X, Y, X', Y' g L (p) and 3 > 0 such that

(i)  \\X\\\<\\X'\\\ + 3/2,

(Ü)  \\Y\\44<\\Y'\\44 + 3/2,

(iii) \\x + y\\4<\\x' + y'\\4a + 3,

(iv) \\x-y\\4<\\x'-y'\\4 + s.

Then we have

||x2 + y2||2<||x'2 + y'2||2 + á.

Proof. For simplicity we use the probabilistic notation

sm-J Z dp.

From (iii) and (iv) we get

2E(X4) + 2E(Y4) + 12£(X2y2) = E((X + Y)4) + E((X - Y)4)

< E((X' + Y')4) + E((X' - Y')4) + 23

= 2E(X'4) + 2E(Y'4) + \2E(Xi2Y'2) + 23

and therefore

\\X2 + y2||2 = E(X4) + E(Y4) + 2E(X2Y2)

= \(E(X4) + E(Y4)) + lz(2E(X4) + 2E(Y4) + \2E(X2Y2))

< \(E(X'4) + 3/2 + E(Y'4) + 3/2) + \(2E(X'4) + 2E(Y>4)

+ \2E(X'2Y'2) + 23)

= E(X'4) + E(Y'4) + 2E(X'2Y12) + 3 = \\X'2 + Y'2\\\ + 3.    D

Together with Theorem 2.1 and Theorem 2.3 we obtain the following corol-

laries:

Corollary 3.4. Let (Xn) be a sequence in L (p) suchthat

(i)  \\xn+k + xm+X<WXn + XX + ¿k   (m,n,kGN),

(ü)  \\Xn+k-xm+X<\\Xn-xX + ¿k   (m,n,kGN),
with

("i) lim*^xA = °-

Then the sequence
i       "

« + 1 .
i=i

is norm convergent in L (p).



MEAN ERGODIC THEOREMS FOR NONLINEAR OPERATORS 787

Corollary 3.5. Let K c L4(p) and T: K —► K be such that

(i)  \\Tf-Tg\\4<\\f-g\\4   (f,gGK),
(Ü)  \\Tf+Tg\\A<\\f + g\\,   (f,gGK).

Then for any f G K

1=0

2
is convergent in L (p).

If moreover K c L4+(p) then

f^(T(f1'2))2

defines a mapping T of

K:={f2:fGK)

into itself satisfying

\\ff+fg\\2<\\f+g\\2        (f,gGK).

Remark. The mapping T in Corollary 3.5 need not be nonexpansive, even if

T is a positive, linear Ll-L°° contraction. To see this, let (E,38,p) be a

probability space and define Tf = J fdpIE . If there exists a measurable set

A with j- < p(A) < 1 then

||77£ - TIA\\2 = 1 - p(A)2 > |(1 - p(A)) > y/\-p{A) = ||7£ - 7J|2 .
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Note added in proof. For odd mappings Corollary 3.4 can already be found in

J. B. Bâillon, R. E. Brück, S. Reich, On the asymptotic behavior of nonexpansive

mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.

Of course, in this case 3.5(ii) follows from 3.5(i).
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