
proceedings of the
american mathematical society
Volume 108, Number 3, March 1990

THE RING OF INTEGER-VALUED POLYNOMIALS

OF A DEDEKIND DOMAIN

ROBERT GILMER, WILLIAM HEINZER,
DAVID LANTZ AND WILLIAM SMITH

(Communicated by Louis J. Ratliff, Jr.)

Abstract. Let D be a Dedekind domain and R - Int{D) be the ring of

integer-valued polynomials of D . We relate the ideal class groups of D and

R . In particular we prove that, if D = 2 is the ring of rational integers, then

the ideal class group of R is a free abelian group on a countably infinite basis.

If D is an integral domain with field of fractions K, the ring of integer-

valued polynomials of D is denoted by Int(D) and is defined to be the subring

of K[t] (where t is an indeterminate) consisting of those polynomials /(/) in

K[t] such that f(D) ç D. Work on rings of integer-valued polynomials has a

long history. In particular, Int(ï), THE ring of integer-valued polynomials, has

been studied at least since the work of Ostrowski [O] and Polya [P]. It was well

known even then that Int(1) is a free module over Z, with a basis consisting

of the binomial polynomials BJt) ,Bx(t), ... , where

ß"(i)=C)=i(r_i)""(i_"+i)/"! '
Polya [P] gives a similar result with Z replaced by the ring of algebraic integers

in a finite algebraic number field of class number 1.

Polya showed that if the integral closure D of Z in a finite algebraic number

field is of class number 1, then Int(D) is a free D-module with a basis consist-

ing of one polynomial of each nonnegative degree. He called such a Z)-basis for

Int(D) a "regular basis". His proof applies for any principal ideal domain D

of characteristic zero. Cahen [Ca, §2] proved that if D is a Dedekind domain,

Int(D) is a free Z)-module, and that if D is a principal ideal domain, then

Int(D) has a regular basis.

Received by the editors June 26, 1989. This research was presented to the 845th meeting of the

AMS, October 28-29, 1988, Lawrence, Kansas, by Professor Heinzer.

1980 Mathematics Subject Classification (1985 Revision). Primary 13B25, 13F05; Secondary
12B05.

Key words and phrases, ring of integer-valued polynomials, invertible ideals, Picard group.

The first and second authors gratefully acknowledge the support of the N SF.

The third author gratefully acknowledges the hospitality of Purdue University while this work

was done.

©1990 American Mathematical Society
0002-9939/90 $1.00+ $.25 per page

673



674 R. GILMER, W. HEINZER, D. LANTZ AND W. SMITH

Brizolis [Br] has shown that, for a class of Dedekind domains D including

the ring of all algebraic integers in a finite algebraic number field, Int(D) is

a Prüfer domain of Krull dimension two; McQuillan [Mc, § 5] and Chabert

[C2, § 6] independently extended this result to all Dedekind domains D with

finite residue fields. Papers such as [GS], [GS2] and [C2] studied the nonzero

finitely generated (i.e. invertible) ideals and the Picard group (i.e. the ideal class

group, i.e. the factor group of the invertible fractional ideals by the subgroup

of principal fractional ideals) of Int(D) for various domains D. The present

paper gives a short exact sequence relating Pic(D) and Pic(Int(D)) for any

Dedekind domain D. It allows us to conclude that Pic(Int(l)) is a free abelian

group on a countably infinite basis.

Cahen and Chabert [CC, § 4] noted that Int(D) is often just D[t], a condi-

tion closely related to finiteness of residue fields of D. Shibata, Sugatani and

Yoshida [SSY] provided the explicit result that, for a Noetherian domain D,

Int(D) ^ D[t] if and only if there is an associated prime ideal P of a principal

ideal of D for which D/P is a finite field. Thus the condition that the residue

fields of D be finite appears in many of the results below.

We freely use the fact that if D is a Noetherian domain and P is a prime

ideal of D, then Int(Dp) = (Int(D))D^p . This was noted in [CC, p. 303], and

a proof appears in [SSY, Proposition 4, p. 300]. Cahen and Chabert remark

that this equality need not hold if D is not Noetherian. Examples of such mis-

behavior appear in [G]: where examples are given of almost Dedekind domains

E with finite residue fields such that Int(E) is not a Prüfer domain. Any such

domain E contains a maximal ideal M for which Int(E)E^M < Int(EM).

We frequently use the fact that any element of Pic(Int(D)) is represented

by an integral ideal / of Int(D) such that /nö/ (0). (McQuillan in [Mc,

p. 162] calls such ideals / unitary; recall that an integral ideal of Int(D) is

a fractional ideal contained in Int(D).) To see this, let / be any invertible

fractional ideal of Int(D), and denote by K the field of fractions of D. Since

Int(D) is contained in the principal ideal domain K[t], JK[t] is principal,

generated by a rational function g(t). Hence B = (g(t))J generates the unit

ideal of K[t]. Because B is finitely generated, there exists a nonzero element

d of D such that I = dB ç D[t] ç Int(D). The ideals / and / determine the

same element of Pic(Int(D)), and because / generates the unit ideal of K[t],

it follows that /nD/(0). (We remark that this observation and statement (1)

of Theorem 1 do not require that the domain be Dedekind; they are true for

any integral domain D.)

Theorem 1. Let D be a Dedekind domain, let a : Pic(D) —* Pic(Int(D)) be

the natural map determined by extension of ideals, and let

ß : Pic(Int(D)) -*     Y[     Pic(Int(Dp))
P€max(D)

be the direct (Cartesian) product of the family of natural mappings Pic(Int(D)) —►

Pic(Int(Dp)), where max(D) denotes the set of maximal ideals of D. Then
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( 1 )  a is infective,

(2) Im(ß) ç @Pemax(D) Pic(Int(Dp)), and

(3) the sequence

0 -^ Pic(D) -^ Pic(Int(D)) M      0    Pic(Int(Dp)) - 0
Pemax(D)

of abelian groups is exact.

Proof. (1) Let / be an invertible integral ideal of D such that I(Int(D)) —

f ■ Int(D) is principal. Applying the homomorphism g i-» g(0) of Int(D)

onto D to the preceding equality, we see that / = f(0)D is principal and,

incidentally, that / = /(0) € /. Therefore a is injective.

(2) Any element x of Pic(Int(D)) is represented by an invertible integral

ideal J of Int(D) such that J n D = I ^ (0). For all but a finite number

of elements P of max(D), we have I <£ P, and hence IDp = Dp . For such

P we also have J(Int(Dp)) = Int(Dp) ; consequently, ß(x) has only finitely

many nonzero coordinates.

(3) We first show that the given sequence is exact in the middle. To see

that Im(a) ç Ker(ß), choose an element y of Pic(D) and an invertible

integral ideal J of D that represents y . Then JDp is principal for each P in

max(D), and hence J(Int(Dp)) = JDp(Int(Dp)) is also principal. Therefore

ß(a(y)) = 0, as we wished to show. For the converse, let b e Ker(ß) and

let B be an invertible integral ideal of Int(D) that represents b and has the

property that C = B n £> / (0). For each P in max(D), B(Int(Dp)) is

principal, is generated by an element of 5, and contains nonzero constant

polynomials. Hence B(Int(Dp)) is generated by C, and the ü-modules B and

C(Int(D)) have the same localization at each maximal ideal of D. Therefore

B = C(Int(D)) and b € Im(a). We conclude that the given sequence is exact

in the middle.

To complete the proof of (3), we show that ß is surjective. For this purpose

it suffices to show that if P is a maximal ideal of D and if J* is an invertible

integral ideal of Int(Dp) such that J*C\Dp / (0), then there exists an invertible

integral ideal J of Int(D) for which J(Int(Dp)) = J* and J(Int(DQ)) =

Int(DQ) for each Q in max(D)\{P}. We claim that J = J* n Int(D) has

the required properties. Since J is the contraction to Int(D) of the ideal

/* in the ring of fractions Int(Dp) of Int(D), we have J(Int(Dp)) = J*.

Moreover, since /* n Dp is PDp-primary, it follows that J n D — J* n D is

P-primary. Thus for all Q ^ P, J meets the multiplicative system D\Q, so

that J(Int(DQ)) = Int(DQ).

It remains, finally, to show that J is invertible. Since J* = J(Int(Dp))

is finitely generated, there exists a finite subset S of J such that 5" gener-

ates /* . Also, J n D — P for some positive integer k, and P is finitely

generated. If J0 is the subideal of J generated by SuP , then JQ is finitely

generated, J0(Int(DQ)) = J(Int(DQ)) = Int(DQ) for each Q in max(D)\{P},
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and J0(Int(Dp)) = J(Int(Dp)) = J*. From these equalities we conclude that

J = J0 is finitely generated and that J is invertible since J(Int(D))DsM is

principal for each M in max(D).     D

Let T be a totally ordered set with the interval topology, i.e. the smallest

topology containing the sets a+ — {t € T : t > a} and a~ = {t e T : t < a} for

all a in T. Let S be any topological space and /, g : S -+ T be continuous

functions. Then the minimum function min(f, g) : S —> T is again continu-

ous. (For, (m/«(/,g)rV) = /"V)ng-V) and (min(f ,g))~l(a') =

/-V)ug-'(0.)
We denote by Z* the totally ordered set Zu{00} , with the interval topology;

thus, singletons from the subset Z are open sets, and a base of neighborhoods

of 00 is given by the sets [n,oo] — {m e Z : n < m} ö {00}. Let v be a

discrete rank-one valuation on the field K. Then K is a topological ring with

neighborhood base at 0 given by the sets  Um = {a e K : v(a) > m}  for

m in Z. Let /(/) = ¿3"=o V e ^M ; we c^m mat the composite function

vof : K —* Z* is continuous: For a in #, suppose first that f(a) ^ 0. Choose

the positive integer m so that m + v(b¡aJ) > v(f(a)) for / = 1, ... ,n and

j = 0,...,/- 1 . For c an element of Um , f(a + c) - f(a) is a sum of terms

('J)b¡c'~JaJ, where \ < i < n and 0 < j < i - 1. Each of these terms has

■u-value greater than v(f(a)) by choice of m , and hence v(f(a + c) - f(a)) >

v(f(a)). Therefore v(f(a + c)) - v(f(a)). Now suppose f(a) = 0, and

consider a neighborhood [n, 00] of 00. Choose the positive integer m so that

m+v(ii>(V) > n for / = 1, ... , n and j = 0,...,/-1 . As above, v(f(a+c)) >

n for c an element of Um . Thus, in either case, for each neighborhood V of

v(f(a)), (v o f)~l(V) contains a neighborhood a + Um of a. By the last

paragraph, if /,,... ,fk € K[t], then min(v o f¡, ... ,v o fk) : K —> Z* is

continuous.

For a topological space S, we denote by F(S, Z*) the set of all continuous

functions from S into Z*. Note that, since Z* is a topological semigroup under

addition, F(S,Z*) is a semigroup under pointwise addition. If a function (f>

in F(S ,Z*) does not take the value 00, then </> is in the subgroup F(S ,Z).

In this case, since Z is discrete, the sets ¡p~ (n), for n in Z, form a disjoint

open cover of 5. Thus if S is compact (not necessarily Hausdorff), then such

a (f) can assume only finitely many values. For any space S, the set C(S, Z)

of constant functions from 5 into Z (i.e. those that assume only one value) is

a subgroup of F(S ,Z).

Consider a discrete rank-one valuation domain V. As with the field K

above, F is a topological ring with the topology induced by the valuation v .

If V is complete and has finite residue field, then V is compact. (For, given

a sequence T0 of elements of V, since the residue field is finite, there exist an

element bQ of TQ and a subsequence T, of T0 for which v(b - b0) > 0 for

all b in F, . Then there exist an element ¿>, of 7^ and a subsequence T2 of
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r, for which v(b - bx) > \ for all b in T2. Continuing this process yields a

Cauchy sequence {bn} , which has a limit in the complete space V.)

2. Remark. The result in the preceding paragraph is a special case of a more

general statement: Let A be an ideal in the commutative ring R with unity.

Then the following conditions are necessary and sufficient for R to be compact

Hausdorff in the ,4-adic topology: (1) A is finitely generated. (2) The factor

ring R/A is finite. (3) The powers of A intersect in the zero ideal. An extension

of the argument in the last paragraph proves the sufficiency of these conditions,

and the necessity of (3) is clear and that of (2) is not difficult to see. For the

necessity of (1), note first that if R is compact Hausdorff, then R is complete

and R/A is also finite, so that Theorem 8.4 of [Ma] shows that A is finitely

generated.

Now suppose the discrete rank-one valuation domain V has finite residue

field but is not necessarily equal to its completion V. Let p be a generator

of the maximal ideal of V. By [C2, § 2], there is a bijection from V onto

5* = Spec(Int(V)/pInt(V)), given by associating to the element a of V the

prime ideal MJpInt(V), where Ma = {/ e Int(V) : f(a) e pV). In fact,

if S is considered as a topological space under its Zariski topology, this bi-

jection is a homeomorphism: To see that it is continuous, take a basic closed

subset of the spectrum, i.e. the set of ideals MJpInt(V) (for elements a of V)

that contain a given ideal I/pInt(V), or equivalently, the set of ideals

Ma/pInt(V) for which v(f(a)) > 1 for every / in /; its inverse image in V is

C\fç.jV\(vof)~ ( 1 ~), a closed set. Now since V is compact and S is Hausdorff

(the latter because Int(V)/pInt(V) is zero-dimensional), it follows that the

bijection is a homeomorphism.

We have just mentioned that the ring Int(V)/pInt(V) is zero-dimensional.

In fact, it is von Neumann regular. To see this, we only need to note that it is

reduced, and this holds in a quite general setting: Let r be a nonzero element

of the domain D for which rD is a radical ideal of D ; then we claim rlnt(D)

is a radical ideal of Int(D). For, if / e Int(D) and / e rlnt(D) for some

k, then (f(a)) e rD for every a in D, so f(a) e rD for every a in D;

thus, f/r e Int(D) and / e rlnt(D), as we wished to show.

Theorem 3. Let V be a discrete rank-one valuation domain with finite residue

field. Denote its completion by V. Then Pic(Int(V)) is isomorphic to the factor

group F(V,Z)/C(V,Z).

Proof. Assume that the element p of V generates the maximal ideal of V.

Let q = \V/pV\, and denote by v the normed valuation associated with V.

Let {«(0}*Jo De a complete set of residues of pV in V, and for the positive

integer n with g-adic expansion n = a0+a{q + .. .+arqr, where 0 < a¡ < q-1,

let sn = u{aQ) + u{ax)p + ... + u(ar)pT. We let f0(t) = 1 and fn(t) = riTo'^-*,)

for n > 0, and we let gn(t) = fn(t)/pk(n), where k(n) = E-=0[«/<?'] and [•]



678 R. GILMER, W. HEINZER, D. LANTZ AND W. SMITH

denotes the greatest integer function. It is known [Cl, Lemma 1] (see also [G,

Proposition 9]) that {gn(t)}^=0 is a free F-module basis for Int(V). More-

over, since p generates the maximal ideal of V and since {u(i)}9¡~0 is also a

complete set of residues of pV in V, the same result shows that {gn(t)}^L0

is a free F-module basis for Int(V). In particular, Int(V) ç Int(V) in

this case. Let I be a finitely generated integral ideal of Int(V) that meets

V nontrivially. For each d in V, 1(d) = {f(d) : f e I(Int(V))} is a

nonzero ideal of V. Since v(I(d)) is the minimum value of v(f(d)) as

/ varies over a finite set of generators, we see that v(I(-)) : V —> Z* is a

continuous function with image contained in Z ; similar reasoning shows that

v(IJ(-)) = v(I(-)) + v(J(-)), for if {f}" generates i, if {g,}™ generates /,

if v(I(d)) = v(fi.(d)) and v(J(d)) = v(g..(d)), then it is easy to show that

v(IJ(d)) = v(f.(d) ■ gj.(d)) = v(f.(d)) + v(8j.(d)) = v(I(d)) + v(J(d)). In

particular, v(I(-)) e F(V ,Z).

By [Mc, Theorem 5.3, page 175], if I,J are finitely generated (and hence

invertible) integral ideals of Int(V) that meet V nontrivially, and if, for each d

in V, the F-ideals 1(d) and J(d) are equal, then I = J. Thus the mapping

I i-> v(I(-)) from the set of invertible integral ideals of Int(V) meeting V

nontrivially into F(V,Z) is injective. Any principal integral ideal of Int(V)

meeting V nontrivially is generated by a power p, so multiplying I by a

principal ideal changes the function v(I(-)) by adding a constant function.

Moreover, every invertible fractional ideal of Int(V) is a principal multiple of

an integral ideal meeting V nontrivially. Hence there is an injective mapping

h of Pic(Int(V)) into F(V ,Z)/C(V ,Z), determined by / ■-» v(I(-)), and

because v(IJ(-)) — v(I(-)) + v(J(-)), the mapping A is a homomorphism.

To see that this mapping is surjective, it is enough to show that any continuous

bounded function cp from V into the set of nonnegative integers is v(I(-)) for

some invertible integral ideal / of Int(V) meeting V nontrivially. Such a <f>

has the form <f> = x] + 2x2 +... + mxm , where x¡ is the characteristic function

of the set <f> (i), and these sets form a partition of V into clopen (closed

and open) sets. So it is enough to show that the characteristic function of a

clopen set in V is v(I(-)) for some I. We use the natural embedding of the

spectrum 5 of the von Neumann regular ring Int(V)/pInt(V) as a subspace of

Spec(Int(V)) and the homeomorphism from the paragraph following Remark

2. A clopen set U in S is the set of ideals Ma containing an ideal I generated

by p and an element that is idempotent modulo plnt(V); thus Ma e U iff

/ ç Ma iff 1(a) ç pV iff v(I(a)) > 1 iff v(I(a)) = 1 (since pel). It follows

that v(I(-)) is the characteristic function of U. This completes the proof.     D

Remark 4. [CC, Example 5, p. 303][Mc, Proposition 2.8, p. 166][SSY, The-
orem 2, p. 298]. Let F be a discrete rank-one valuation domain with infi-

nite residue field. Then Int(V) = V[t], a unique factorization domain, so

Pic(Int(V)) is trivial.
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Lemma 5 [Ca, Lemma, p. 751]. Let D be a Dedekind domain, and let q be a

positive integer. Then the set of maximal ideals P of D for which D/P is a

field of q elements is finite. Therefore the set of maximal ideals P of D for

which D/P is a finite field is countable.

Proof. The statement is clear if D is a field. If D is not a field, let x be a

nonzero nonunit in D. Then for any maximal ideal P for which D/P is a

field of q elements, x(x9'1 -l)=Jc?-x6f,so x e P or x"~l - 1 e P.

Since neither x nor xq~ - 1 is zero, each is in only finitely many maximal

ideals P.     G

Theorem 6. Let D be a countable Dedekind domain. If at least one of the residue

fields at maximal ideals of D is finite, then Pic(Int(D)) is the direct sum of

Pic(D) and a countably infinite number of copies of Z.

Proof. Let P be a maximal ideal for which D/P is finite. By the proof of

Theorem 3, a continuous bounded function from the completion V of Dp into

Z is the minimum of a finite set of compositions of the valuation associated with

V and polynomials with coefficients in the field of fractions of D. Since there

are only countably many such polynomials, F(V,Z) is a countable subgroup

of the direct product of copies of Z indexed by V. By [F, Theorem 19.2, p.

94], F(V, Z) is a free abelian group. The constant function 1 is the generator

of C(V, Z), and it can be chosen as one of a set of free generators of F(V, Z)

(because if 1 = J2¡ aie¡ f°r some basis elements et and integers ai, then the

a¡ 's are relatively prime, so there is a basis of F(V ,Z), or even just of the

subgroup generated by the finitely many ei 's in the sum, containing 1 ; see [Ba,

p. 166], [F, Lemma 9.1]). Thus F(V ,Z)/C(V ,Z) is again a free abelian group.

Its basis is clearly countable. But it cannot be finite; for, suppose F(V,Z)

were generated by the finite set {f}"=i ■   Each f  induces a finite partition

V - Bn u ... U Bik(i) of V into clopen sets such that the restriction of f to

each B- is a constant function. Form all possible sets of the form C = f]"=l B(.

for \ < j < k(i). There are only finitely many such sets C, each is clopen,

each f. is constant-valued on each C, and the sets C form a partition of V .

Because {f}" generates F(V ,2), each f in F(V ,Z) is constant-valued on

each of the sets C. Hence if there are k such nonempty sets C, then each /

in F(V,Z) assumes at most k distinct values. This is a contradiction, for the

cosets of prV form a partition of V into clopen subsets, and an element of

F(V, Z) can assume an arbitrary value on each of these cosets.

Now by Remark 4 and Lemma 5, ®PemaxiD) Pic(Int(Dp)) is still a free

abelian group on a countably infinite basis, so the short exact sequence of The-

orem 1 splits, and the result follows,     o

Corollary 7. Pic(Int(Z)) is a free abelian group on a countably infinite basis.

More generally, if D is any countable PID with at least one finite residue field,

then Pic(Int(D)) is a free abelian group on a countably infinite basis.
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Remark 8. Corollary 7 extends to a similar conclusion for the Grothendieck

group K0(Int(D)). In fact, the following more general result is true: If E is

a Dedekind domain with the property that Int(E) is Prüfer (or equivalently,

by [C2], that each residue field is finite), then K0(Int(E)) ~ Z © Pic(Int(E)).

So by Theorem 6, K0(Int(E)) is the direct sum of Pic(E) and a free abelian

group of countably infinite rank. To see that K0(Int(E)) ~ Z © Pic(Int(E)),

we show first that Int(E) has the Steinitz property, i.e. 7 © 7 ^ Int(E) © IJ

for any invertible ideals I ,J of Int(E). To do so, as noted above, we may

assume that I and J are integral ideals meeting E nontrivially. Then there

is a nonzero element a of I n J n E. By [C2], there exist elements / and

g of Int(E) for which I = (a,f) and J = (a,g). Define a homomorphism

<p : Int(E) —► 7/7/ by <p(h) = ha + IJ and set L = ker(<p). Since ç» is a

surjection, there are two short exact sequences

0   -+   L   -+   /ni(£)    -»   7/7/   -♦   0

0   —   7/   -   7   -»   I/IJ   -.   0.

Since, by hypothesis, all finitely generated ideals are invertible (projective), we

can apply Schanuel's lemma to conclude that I © L ~ 77 © Int(E). Taking the

second exterior power, we have 77, ~ 77 and hence L ~ 7. This produces

the Steinitz condition I © 7 ~ 77 © Int(E). Since Int(E) is Prüfer, a finitely

generated torsion-free 7«?(7i)-module 7> is isomorphic to a direct sum 7, ©

...®Ik of invertible ideals (cf. [K, Theorem 1]), and hence, using the Steinitz

property, P is isomorphic to F © Ix- ■ -Ik, where F is a free 7«i(£')-module

of rank k-\. It follows that K0(Int(E)) ~ Z © Pic(Int(E)). (See also [Ba,

Proposition 3.7, p. 468]. J. Brewer and L. Klingler have independently observed

that Int(E) has the Steinitz property.)
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