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Abstract. Let I Cm be an ideal of a local noetherian ring (R,m). Consider

the exceptional fiber n~l(V(I)) of the blowing-up morphism

*■ Pr°J (®„>o7") "* Spec(jR)

and the special fiber 7t-1(m). We show that the complement set

n-\V{I))-n-\m)

is highly connected if the asymptotic depth of the higher conormal modules

I"/I"+l   is large.

1. Introduction

Let (R, m) be a local noetherian ring and let / ç R be an ideal of height

> 0. Then it is known that the depths of the Ä-modules R/In and In/In+

take constant values t(I) resp. 7(7) for all large n [2]:

(i) depth(Ä/7") =/(/)   V«»0,

(ii) depth(/"//"+1) = 7(7)   Vn > 0.

t(I) and 1(1) are called the asymptotic depths of R/l" resp. of I"/l"+ . In

[3] we have shown

(1.2) l(I)>t(I).

It turns out that these asymptotic depths are related to the topology of the

blowing-up of Spec(R) at I, which by definition is given by the canonical

morphism

(1.3) Bl(/):=Proj(5H(/))^SpecCR),

where <H(7) stands for the Rees algebra ©n>07" of 7. It was noticed by

Burch [7] that the dimension of the special fiber nj (m) of (1.3) is subject to

the inequality dim(nj (m)) < dim(Ä) - minfl depth(R/l").
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In [2] we gave an improvement of this, by showing that minn depth(i?/7")

may be replaced by the asymptotic depth t(I) of the rings R/l" . In fact, we

even may replace minndepfh(i?/7") by 7(7) (cf. [3]):

(1.4) dim(^7'(m)) < dim(7?) - 7(7).

So, if the asymptotic depth 7(7) is large, the special fiber nj (m) must be small.

In this note we want to give a further result of this type. We namely shall

prove that for large values of 7(7) the complement

(1.5) nj\v{I))-xj\m)

of the special fiber in the exceptional fiber nj (V(I)) is highly connected under

certain additional conditions (4.8).

In fact we shall give our result in a more general context. Instead of the

blowing-up morphism (1.3) we consider an arbitrary projective morphism

n: Proj(S) —► Spec(R) (induced by a homogeneous /?-algebra S). We then

choose a noetherian graded 5-module M = 0„ez Mn and relate the depths of

the ^-modules Mn to the connectivity of the sheaf SF which is induced by

M on Proj(5"). Using the connectedness criteria for blowing-up given in [5],

we immediately will obtain bounds of connectivity for the set (1.5).

2. Asymptotic depth in projective schemes

Throughout this section let (R, m) be a local noetherian ring and let S =

R® 5, © S2® ■ ■ ■ (Sn ^ 0 V« » 0) be a homogeneous noetherian 7?-algebra.

So we may write S = R[al, ... ,ar] with ax, ... ,ar G 5, . We consider the

canonical morphisms

(2.1) y: Spec(S) ^ Spec(7<),       n: Proj(S) - Spec(Ä).

Moreover, let M = ©n€Z Mn (Mn ^ 0 Vn > 0) be a finitely generated, graded

essential S-module.

Let &~ be the coherent sheaf (^ 0) induced by M on Proj(»S)

(2.2) & := M.

Finally we introduce

(2.3) depth,(M) := min{depth(Mn)|« e I}.

(We make use of the convention depth (0) = oo.) Denoting the grade of M

with respect to an ideal 7 ç S by g(I, M) (by definition this is the maximal

length of M-regular sequences in 7 ), we also may write

(2.3)' depth, (M) = g(mS, M).

This is easily seen in expressing depth and grade by the vanishing of local co-

homology and observing the natural isomorphisms H'mS(M) = 0„ez H'm(M).
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(2.4) Proposition, (i) (JnelAss(Mn) = y(Ass(M)).

(ii) depth,(M) = min{depth(Mp)|p e y_1(m)} .

Proof, (i) After an eventual localization it suffices to show that m belongs to

Ass(A7J for some n iff it belongs to y(Ass(M)). The first statement is equiv-

alent to depth,(M) = 0, whereas the second one means g(mS ,M) = 0. This

allows to conclude by (2.3) '.

(ii) The right-hand side of the stated equality is just g(mS,M). So we

conclude again by (2.3) '.

(2.5) Proposition. For all sufficiently large n e N, the following statements are

true:

(i) Ass(A7n) = 7r(Ass(^)).

(ii) depth(Afn) = min{depth(^)|x e 7t_1(m)}.

Proof, (i) After an eventual extension of R we may assume that R/m is infinite.

If we consider the points of Proj(.S) as essential prime ideals in S, Ass(^)

is exactly the set of essential members of Ass(M). So there is an n0 e Z

with Ass(y ) = Ass(M>n ), where M>n stands for the submodule 0„>„ Mn

of M. Thus, replacing M by M>n , we may write Ass(^) = Ass(M), hence

7î(Ass(y)) = y(Ass(M)). Now, by our choice of M, Ass(Af) has only essential

members. So none of the (finitely many) p e Ass(M) contains S{ . As R/m is

infinite this allows to choose an element / e 5, which avoids all members of

Ass(A7). We thus obtain injections Mn -+ Mn+X , which show that Ass(MJ ç

Ass(Mn+1), V« e Z . Now we conclude by (2.4)(i).

(ii) We make induction on dM = min{depth(y )\x € ^_l(m)}. If dM — 0,

we conclude by (i). If dM > 0, clearly m ^ re(Ass(y)). We thus find

an element a G m which avoids all members of 7r(Ass(y)). By (i), a be-

comes Mn -regular for all n » 0. So for all sufficiently large n we have

depth(A7f!/a7\7/i) = depth(A/n) - 1. Moreover by our choice of a, we have

depthi&x/a&'x) = depth(^)- 1, thus dM/aM = dM-\ . So we conclude apply-

ing the hypothesis of induction to M/aM.

We introduce the following notations:

(i) Ass*(AT) := n(Ass(3r)) = Ass(MJ   V« > 0,

(2.6)
(ii) depth*(A7) := min{depth(i^)|x € n  '(m)} = depth(MJ   V« » 0.

Ass*(M) is called the asymptotic set of prime divisors of Mn whereas

depth* (M) is called the asymptotic depth of Mn . We notice

(i) Ass*(M) = y(Ass(M>B))   V« > 0,

(ii) depth* (M) = depth, (A/>J   V« > 0.
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As an application of our previous results we want to prove

(2.8) Corollary.  dim(Supp(^) n n~l(m)) < dim(Proj(5)) - depth*(M).

Proof. Let x be a generic point of Supp(y) n n~ (m). By (2.5)(ii) we have

depth(^) > depth*(M) ; thus dim(^Proj(5) x) > depth*(M). This induces

dim({x}) < dim(Proj(5)) - dim(¿fproj(S) J < dimiProKS)) - depth*(M),

hence our claim.

(2.9) Remark, (i) Let (Ä,m) be noetherian and local and let 7 ç m be an ideal

of positive height. Let Gr(7) = 0„>o7"/7"+1 be the associated graded ring of

7. Applying (2.5)(ii) with S = M — Gr(7), we obtain the asymptotic stability

of depth(7"/7"+1) for n > 0 (cf. [2, 3]).

(ii) Let (R,m) and I ç R as in (i). Consider the canonical diagram

B1Ä(7) = Proj(7<(7))      -2-»   Spec(Ä)

î Î
7r-'(F(7)) = Proj(Gr(7)) -2-» Spec(/?/7)

Then, applying (2.8) to S = M = Gr(7) and observing that dim(Proj(Gr(7)) =

dim(TÎ) - 1 we get dim(^/_1(m)) = dim(7f7'(m/7)) < dim(R) - 1 -7(7). This
proves again (1.4). In the same way we get the asymptotic stability of the sets

Ass(7"/7"+ ) which is shown in [1].

3. Connectedness-subdimension

We define the subdimension dim(Z) of a closed set Z in a noetherian

scheme X as the minimal codimension (in Z ) of all closed points x e Z.

Thus we may write

dim(Z) = min{dimv(Z)|x e Z closed }       (< dim(Z)).

To be complete we define dim(0) = dim(0) = -1.

If Z ç X is a closed subset, we define the connectedness-subdimension of Z

as follows:

(3.1) ç(Z) := mmldim(W)\W ç Z closed, Z-W disconnected}.

Thereby the empty set 0 is considered as disconnected. So we have c(Z) >

-1 with c(Z) > 0 iff Z is connected. Comparing with the connectedness-

dimension c(Z) introduced as in [6], we obviously have c(Z) < c(Z). If

Z/0 we have

(3.2) c(Z) = minldimfZ, nZOI,

where Z, and Z2 are unions of irreducible components of Z such that Z =

Z, u Z2 ; Z,, Z2 t¿ 0. Now, let y ^¿ 0 be a coherent sheaf over X . In view
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of (3.2) it is natural to define the connectedness-subdimension of y by the

formula

(3.3)        ç(y) := minldimfT-, n TJ\Ty UT2 = Ass(y),TX,T2± 0}.

To be complete we define c(0) — -1 . We say that a coherent sheaf y is

connected if ç(y ) > 0. Obviously we have

(3 4) (i)  £(y) = min{ç(Supp(y)), dim Jx}\x e Ass(y)} ,

(ii) y connected <^=> Supp(y) connected.

To relate depths and connectivity for sheaves we prove

(3.5) Lemma. Let A be a noetherian ring, let I Q A be an ideal, and let M ^

0 be an indecomposable finitely generated A-module with g (I, M) > 1. Let

T{,T2C Ass(M) such that Tx, T2 ¿ 0, Tx U T2 = Ass(AT). Then r,nf2^
V(I).

Proof. Suppose f, n T2 ç K(7). Put /,. = np€7- P (i = 1,2). Then 7 ç

^/j + J2. In particular we have g(Jx + J2,M) > g (I ,M) > 1, g(JnM) =

0 (/' = 1,2) and 7, n 72 ç ^/ann(Af). Considering the following piece of the

Mayer-Vietoris sequence for local cohomology:

H°Jl+j2(M) - 77° (M) 0 77;2(M) - 77° nJi(M) -, h\^(M) ,

we get H°A(M) © 77° (M) = H^h(M) = M, H*j.(M) + 0. This contradicts

the assumption that A7 is indecomposable.

We also shall need the following graded version of (3.5), which is shown in

the same way using "graded" local cohomology.

(3.5) ' Lemma. Let A be a noetherian graded ring, let 7 ç A be a graded ideal,

and let M / 0 be a finitely generated graded A-module, which is indecomposable

in the category of graded A-modules. Let g(I, M) > 1 and let Tx,T2ç Ass(M)

such that Tx,T2¿0, TxuT2 = Ass(M). Then f,nf2^ V(I).

As an application of (3.5) we get

(3.6) Lemma. Let X be a noetherian scheme and let y be a connected coherent

sheaf over X such that the stalk y is an indecomposable @x -module for each

closed point y o/Supp(y). Let Z ç X be a closed set, which contains all closed

points of Supp(y). Finally assume that dz := min{depth(S?x)\x e Z} > 1.

Then the restriction ¡^\X - Z of ^ to the open subset X - Z is connected

and satisfies the inequality c(&~\X - Z) > dz - 2.

Proof. As dz > 0 we have Ass(y|X-Z) = Ass(y). Now let 2T, ,T2 Ç Ass(y)

be nonempty and such that r, U T2 = Ass(y ). Denote by 7", and T2 their

closures in X. As y is connected we have Tx n T2 ^ 0. So we find a

closed point y € 7", n T2. By our assumption we have y e Z, and y is

indecomposable. Let 1 Ç (fx be the vanishing ideal of Tx n T2 at y . By (3.5)

we have g(I ,&) < 1. Let J ç ¿f. y be the vanishing ideal of Z at y and let
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p be a minimal prime divisor of I + J. Then clearly we have g(p,S?~) > dz .

This induces ht(p/7) > dz — 1 ; thus dimx(r, n T2) > dz - 2 for all closed

points x of r, n T2 - Z , which satisfy y e {x}. Making y run through all

closed points of 7", n T2, we obtain dim (7^ n f2 - Z) > dz - 2. This proves

our claim.

We now return to the morphism 7r: Proj(5') —► Spec(Ä) defined in (2.1)

and look at the connectivity of the sheaf y induced by a noetherian, graded,

essential ^-module M = 0neZ^7„ (cf. (2.2)). Defining depth*(A7) according

to (2.3) we have

(3.7) Proposition. Assume that y is connected and that the stalks of y are

indecomposable in all closed points of Supp(y). Let depth* (M) > 1. Then

the restriction y|(Proj(5) - n~ (m)) is connected and satisfies the inequality

£(y|(Proj(S) - 7r"'(m))) > depth*(M) - 2.

Proof. Apply (3.6) with Z = 7t_1(m) and use (2.5)(ii).

We notice the following criterion for the connectedness of y, in which S>,

denotes the irrelevant ideal S, ©<S2 © • • •  of S.

(3.8) Proposition. Let M be indecomposable as a graded module and assume

that g(S>x ,M)>\. Then y is connected.

Proof. Let Tx ,T2ç Ass(y) nonempty and such that TxuT2 = Ass(y). We

must show Tx n T2 / 0 (in Proj(5')). Considering Tx and T2 as sets of

prime ideals this comes up to prove that there are homogeneous prime ideals

q e Spec(.S) - V(S>X), p, e Tx, p2 € T2 with p, ,p2 ç q.  This is clear by

(3.5)'.

(3.9) Remark. The condition g(S>x,M) > 1 exactly means that there is a

canonical isomorphism (cf. [10])

M^077°(Proj(5),y(«)).
n

This observation also immediately gives a proof of (3.8). In the case M = S

the connectivity of y = &proj,S) exactly corresponds to the connectivity of

Proj(S) (see (3.4)(ii)) and thus is a classical subject of algebraic geometry. One

of the mostly used criteria for the connectedness of Proj(,S) is the fact that

Proj(5) is connected iff its ring of global sections 770(Proj(5,),^p.(5)) = T

is a local ring. This is due to the observation that Spec(T) -£-* Spec(7?) is a

Grothendieck-Stein factor of the morphism n: Proj(S) —► Spec(/?) [8].

4. Blowing up

In this section let (R,m) be a local noetherian ring and let 7 ç m be an

ideal of positive height. We want to study the blowing up morphism (cf. (1.3))

BLj(7) m Proj(ÍH(7)) -^ Spec(R).
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Thereby we are mainly interested in connectivity of the exceptional fiber

(4.1) FR(I) := n~\v(I)) = Proj(Gr(7))

of Uj and of the complement

(4.2) CR(I):=FR(I)-n;l(m)

of the special fiber nj (m) in exceptional fiber. First we give the following

connectedness-criterion for the exceptional fiber 7^(7), in which R denotes

the m-adic completion of R.

(4.3) Proposition. If Spec (7^) - V(IR) is connected, the exceptional fiber FR(I)

is connected.

Proof. Assume that Spec(R)-V(IR) is connected. Let ZX,Z2 be unions of ir-

reducible components of BlR(IR) such that Z, UZ2 = BlR(IR). As ht(IR) > 0

the canonical images nIR(Zx), n,R(Z2) ç Spec(7<) are again unions of irre-

ducible components and cover the whole set Spec(R). By our connectedness

assumption %lR(Z2) n n/R(Zx) contains a point y e Spec(Ä) - V(IR). In par-

ticular, y has one single preimage point x e BlR(IR). So x must belong to

Z, n Z2. This shows that B\R(IR) is connected. Therefore 7^(7) must be

connected (cf. [6, (3.4) or 5, (2.5)]).

(4.4) Corollary. If g(I ,R) > 1, the exceptional fiber FR(I) is connected.

Proof. Passing to completion we get g(IR,R) > 1 . Applying (3.5) with A =

M = R we see that Spec(Ä) - V(IR) is connected and thus may conclude by

(4.3).
Now we formulate a connectedness-criterion for the complement CR(I). To

do so, we introduce the set T(I) of all images of generic points of the excep-

tional fiber:

(4.5) T(I) := {^(x)|x = generic point of 7^(7)}.

Using this notation we have

(4.6) Proposition. Assume that g(I ,R) > 1 or that R is an excellent normal

domain. Then CR(I) is connected if and only if T (I) satisfies the condition

( * ) Dx n D2 - {m} / 0   V77,, U2 ç T(I) with Ux,U2¿0 and UxuU2 = T(I).

Proof. Clearly the connectedness of CR(I) induces the condition (* ). To prove

the converse, let Tx u T2 be a decomposition of the set of all generic points

of 7^(7) such that T¡ - n~ (m) ^ 0 (/ = 1,2). It suffices to show that

r, n T2 - nj (m) is not empty. As T(I) satisfies the condition ( * ), we find

ape n¡(Tx) n 7r/(r2) - {m} . We claim that the exceptional fiber FR (I ) of

the localized blowing-up B1Ä (7 ) —> Spec(7? ) is connected. This follows from

(4.4), respectively from (4.3), as either g(I ,R) > 1 or as (R ) is a domain

(cf. [9]).
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If we consider FR (I ) as a subset of FR(I), the observed connectedness

furnishes a point x e FR (7 ) n 7", n T2. As 7^ (7p) n n~¡ (m) ^ 0, we get our

claim.

Now, we want to give an estimate on the small connectedness-subdimension

c(CR(I)) of CR(I), which we define by

(4.7) c(CR(I)) := £(^Proj(Gr(/))|CÄ(7)) < ç(CR(I)).

Defining 7(7) according to (l.l)(ii) we get

(4.8) Proposition. Let 7(7) > 1 and assume that either Spec(7?) - V(IR) is

connected or that g(I,R) >1. Then CR(I) is connected and satisfies

c(CR(I)) > 7(7) - 2.

Proof. By (4.3) or by (4.4),  7^(7)  is connected.   Now we apply (3.7) with

S = M = Gr(7).

(4.9) Example. Let (R, m) be a local Cohen-Macaulay ring and let p e Spec(7?)

be an almost complete intersection of height h > 1, which is a generic complete

intersection. Thus, denoting by ß (p) the minimal number of generators of the

localized ideal pq ça (q e Spec(7?)), we have ßm(p) - h + 1, ¿u (p) = h . We

put

U(p) := {q e V(p)\ ht(q/p) = 1, ßq(p) = h + 1}.

By [4] we know

(i)   7(p) = min{dim(i?/p) - 1, depth(7í/p)},

(ii) if q e V(p), q := q Gr(7) n Gr(7) is the unique minimal prime divisor

of q Gr(7) which retracts to q.

(iii)   q —► q defines a 1 -1 correspondence

U(p) U {p} ~ {x e FR(p)\x generic } = Ass(^Proj(Gr(p))).

By (4.6) and (4.8) we get from (i) and (iii)

(iv) (a) CÄ(p) is connected.

(b) c(CR(p)) = c_(CR(p)) > min{dim(^/p) - 3, deplh(R/p) - 2} .
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