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ABSTRACT. Let / C m be an ideal of a local noetherian ring (R, m). Consider
the exceptional fiber #—!(V(I)) of the blowing-up morphism

. 3 n —
n: Proj (@nzol ) Spec(R)
and the special fiber 7~ !1(m). We show that the complement set
') -2~ (m)

is highly connected if the asymptotic depth of the higher conormal modules
I"/1"*! s large.

1. INTRODUCTION

Let (R,m) be a local noetherian ring and let 7 C R be an ideal of height
> 0. Then it is known that the depths of the R-modules R/I" and I"/I"*"'
take constant values t(I) resp. f(I) for all large n [2]:

(i) depth(R/I") =t(I) Vn>0,

(i) depth(I"/I"™")=%(I) Vn> 0.

t(I) and ¥(I) are called the asymptotic depths of R/I" resp. of I"/I"*' . In
[3] we have shown

(1.2) (I > t(I).

It turns out that these asymptotic depths are related to the topology of the
blowing-up of Spec(R) at I, which by definition is given by the canonical
morphism
(1.3) BI([) := Proj(R(I)) = Spec(R),
where R(I) stands for the Rees algebra ®n20 I" of I. It was noticed by
Burch [7] that the dimension of the special fiber n,_l(m) of (1.3) is subject to
the inequality dim(r; '(m)) < dim(R) — min, depth(R/I").

(1.1)
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In [2] we gave an improvement of this, by showing that min, depth(R// )
may be replaced by the asymptotic depth#(I) of the rings R/I". In fact, we
even may replace min, depth(R/I") by I(I) (cf. [3]):

(1.4) dim(z; ' (m)) < dim(R) — 7(1).

So, if the asymptotic depth #(1) is large, the special fiber n, : (m) must be small.
In this note we want to give a further result of this type. We namely shall
prove that for large values of #(I) the complement

(1.5) n; (V) - n; ' (m)

of the special fiber in the exceptional fiber 7, : (V(I)) is highly connected under
certain additional conditions (4.8).

In fact we shall give our result in a more general context. Instead of the
blowing-up morphism (1.3) we consider an arbitrary projective morphism
n: Proj(S) — Spec(R) (induced by a homogeneous R-algebra S ). We then
choose a noetherian graded S-module M =, ., M, and relate the depths of
the R-modules M, to the connectivity of the sheaf # which is induced by
M on Proj(S). Using the connectedness criteria for blowing-up given in [5],
we immediately will obtain bounds of connectivity for the set (1.5).

2. ASYMPTOTIC DEPTH IN PROJECTIVE SCHEMES

Throughout this section let (R, m) be a local noetherian ring and let S =
ReS ®5,®--- (S, # 0Vn > 0) be a homogeneous noetherian R-algebra.

So we may write S = R[a,,...,a,] with a ,...,a, € §,. We consider the
canonical morphisms
(2.1) y: Spec(S) — Spec(R), n: Proj(S) — Spec(R).

Moreover, let M =@
essential S-module.
Let # be the coherent sheaf (# 0) induced by M on Proj(S)

(2.2) F =M.

wcz M, (M, #0Vn>>0) be a finitely generated, graded

Finally we introduce
(2.3) depth, (M) := min{depth(M, )|n € Z}.

(We make use of the convention depth (0) = oco.) Denoting the grade of M
with respect to an ideal I C S by g(I, M) (by definition this is the maximal
length of M-regular sequences in I ), we also may write

(2.3) depth (M) = g(mS, M).

This is easily seen in expressing depth and grade by the vanishing of local co-
homology and observing the natural isomorphisms H, (M) =@, ., H, (M)
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(2.4) Proposition. (i) U,c, Ass(M,) = y(Ass(M)).
(ii) depth, (M) = min{depth(M,)[p € 7' (m)}.

Proof. (i) After an eventual localization it suffices to show that m belongs to
Ass(M,) for some n iff it belongs to y(Ass(M)). The first statement is equiv-
alent to depth (M) = 0, whereas the second one means g(mS,M) = 0. This
allows to conclude by (2.3)".

(i) The right-hand side of the stated equality is just g(mS,M). So we
conclude again by (2.3)".

(2.5) Proposition. For all sufficiently large n € N, the following statements are
true:

(i) Ass(M,) = n(Ass(F)).

(ii) depth(M,) = min{depth(Z,)|x € n~'(m)}.
Proof. (i) After an eventual extension of R we may assume that R/m is infinite.
If we consider the points of Proj(S) as essential prime ideals in S, Ass(¥)
is exactly the set of essential members of Ass(M). So there is an n, € Z
with Ass(¥) = Ass(M, ), where M, = stands for the submodule @, M,
of M. Thus, replacing M by M, , we may write Ass(¥ ) = Ass(M), hence
n(Ass(F)) = y(Ass(M)) . Now, by our choice of M, Ass(M) has only essential
members. So none of the (finitely many) p € Ass(M) contains S, . As R/m is
infinite this allows to choose an element f € S, which avoids all members of

Ass(M). We thus obtain injections M, Im which show that Ass(M,) C

n+l>°

Ass(M,_,), Vn € Z. Now we conclude by (2.4)(i).

(ii) We make induction on d,, = min{depth(¥)|x € n_'(m)} .1Ifd,, =0,
we conclude by (i). If d,, > 0, clearly m ¢ n(Ass(¥)). We thus find
an element a € m which avoids all members of 7(Ass(#)). By (i), a be-
comes M -regular for all n > 0. So for all sufficiently large n we have
depth(M,/aM,) = depth(M,) — 1. Moreover by our choice of a, we have
depth(¥ /a¥ ) = depth(Z) — 1, thus d,, JaM = d,,—1. So we conclude apply-
ing the hypothesis of induction to M/aM .

We introduce the following notations:
(i) Ass’ (M) := n(Ass(F)) = Ass(M,) Vn>0,

(2.6)
(ii) depth” (M) := min{depth(¥)|x € n_l(m)} = depth(M,) Vrn>0.

Ass’(M) is called the asymptotic set of prime divisors of M, whereas
depth®* (M) is called the asymptotic depth of M, . We notice

(i) Ass (M) = y(Ass(MZ")) vn >0,
(ii) depth™(M) = depth, (M,,) Vn>>0.

(2.7)
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As an application of our previous results we want to prove

(2.8) Corollary. dim(Supp(¥)nz~"'(m)) < dim(Proj(S)) — depth*(M).

Proof. Let x be a generic point of Supp(# )N n_'(m). By (2.5)(ii) we have
depth(#)) > depth™ (M) ; thus dim(&, §)x) = depth®(M) . This induces

r0j
dim({x}) < dim(Proj(S)) — dim(&},; s, ) < dim(Proj(S)) — depth” (M),

hence our claim.

(2.9) Remark. (i) Let (R, m) be noetherian and local and let / C m be an ideal
of positive height. Let Gr(I) = @,.,1"/I""" be the associated graded ring of
I. Applying (2.5)(ii) with S = M = Gr(I), we obtain the asymptotic stability
of depth(I"/I"*") for n> 0 (cf. [2, 3]).

(i1) Let (R,m) and I C R as in (i). Consider the canonical diagram

Bl.(I) = Proj(R(I)) —™— Spec(R)

I T

2~ (V(I)) = Proj(Gr(I)) —=— Spec(R/I)
Then, applying (2.8) to S = M = Gr(I) and observing that dim(Proj(Gr([)) =
dim(R) — 1 we get dim(n,_'(m)) = dim(ﬁl_l(m/l)) < dim(R) — 1 —#(I). This
proves again (1.4). In the same way we get the asymptotic stability of the sets
Ass(I"/I"*") which is shown in [1].

3. CONNECTEDNESS-SUBDIMENSION

We define the subdimension dim(Z) of a closed set Z in a noetherian
scheme X as the minimal codimension (in Z ) of all closed points x € Z .
Thus we may write

dim(Z) = min{dim,(Z)|x € Z closed } (£ dim(Z)).

To be complete we define dim(<) = dim(&J) = —1.
If Z C X is a closed subset, we define the connectedness-subdimension of Z
as follows:

(3.1) ¢(Z) ;= min{dim(W)|W C Z closed, Z — W disconnected}.

Thereby the empty set & is considered as disconnected. So we have ¢(Z) >
—1 with ¢(Z) > 0 iff Z is connected. Comparing with the connectedness-
dimension ¢(Z) introduced as in [6], we obviously have ¢(Z) < ¢(Z). If
Z # < we have

(3.2) ¢(Z) = min{dim(Z, N Z,)},

where Z, and Z, are unions of irreducible components of Z such that Z =
Z,UZy;Z,,Z, # D. Now, let F # 0 be a coherent sheaf over X . In view
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of (3.2) it is natural to define the connectedness-subdimension of % by the
formula

(3.3)  ¢(F):=min{dim(T, N T,)|T,UT, = Ass(¥), T, , T, # B}.

To be complete we define ¢(0) = —1. We say that a coherent sheaf % is
connected if ¢(¥) > 0. Obviously we have

(i) (%) =min{c(Supp(¥)), dim {x}|x € Ass(F)},

34
(34) (i) & connected <= Supp(¥) connected.

To relate depths and connectivity for sheaves we prove

(3.5) Lemma. Let A be a noetherian ring, let I C A be an ideal, and let M #
0 be an indecomposable finitely generated A-module with g(I,M) > 1. Let
T,,T, C Ass(M) such that T\, T, # @, T,UT, = Ass(M). Then T,NT, &
V().

Proof. Suppose T 'nT,c V). Put J,=\,crp (i=1,2). Then I C
vIh+J,. In partlcular we have g(J +J,,M) > g(I,M)>1, g(J;,M) =
0(=1,2) and J,NJ, C \/ann(M). Considering the followmg piece of the
Mayer-Vietoris sequence for local cohomology:

H; (M) — H, (M)® Hy, (M) — H, (M)~ H, , (M),

we get Hgl( ) @ (M) J np(M) =M, HO(M ) # 0. This contradicts
the assumption that M is 1ndecomposable

We also shall need the following graded version of (3.5), which is shown in
the same way using “graded” local cohomology.

(3.5)' Lemma. Let A be a noetherian graded ring, let I C A be a graded ideal,
and let M # 0 be a finitely generated graded A-module, which is indecomposable
in the category of graded A-modules. Let g(I1,M) > 1 andlet T|,T, C Ass(M)
such that T,,T, # @, T\UT, =Ass(M). Then T,NT, ¢ V(I).

As an application of (3.5) we get

(3.6) Lemma. Let X be a noetherian scheme and let & be a connected coherent
sheaf over X such that the stalk ? is an indecomposable @, -module for each
closed point y of Supp(#). Let Z C X beaclosed set, whzch contams all closed
points of Supp(¥). Finally assume that d, := min{depth(¥ )[x € Z} > 1.
Then the restriction F |X —Z of F to the open subset X — Z is connected
and satisfies the inequality ¢(F|X -Z)>d, - 2.
Proof. As d, >0 wehave Ass(F |X~Z) = Ass(¥ ). Nowlet T, ,T, C Ass(F)
be nonempty and such that 7, U T, = Ass(¥). Denote by T, and T, their
closures in X. As & is connected we have T, N T, # &. So we find a
closed point y € T, N T,. By our assumption we have y € Z, and 97 is
indecomposable. I_ct IC ﬁ x , D€ the vanishing ideal of T,NT, at y. By (3 5)
we have g(I, .9§) <l.Let JCO, be the vanishing 1deal of Z at y and let
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p be a minimal prime divisor of I + J. Then clearly we have g(p ,9;) >d,.
This induces ht(p/I) > d, — 1; thus dim (7, N T,) > d, — 2 for all closed
points x of T, N T, — Z, which satisfy y € {x}. Making y run through all
closed points of T, N T,, we obtain dim(T, N T, - Z) > d, — 2. This proves
our claim.

We now return to the morphism z: Proj(S) — Spec(R) defined in (2.1)
and look at the connectivity of the sheaf ¥ induced by a noetherian, graded,
essential S-module M =, ., M, (cf. (2.2)). Defining depth* (M) according
to (2.3) we have

(3.7) Proposition. Assume that & is connected and that the stalks of & are
indecomposable in all closed points of Supp(¥). Let depth*(M) > 1. Then
the restriction & |(Proj(S) — n~'(m)) is connected and satisfies the inequality

¢(F|(Proj(S) -z~ '(m))) > depth™ (M) — 2.

Proof. Apply (3.6) with Z = n_l(m) and use (2.5)(ii).
We notice the following criterion for the connectedness of # , in which S,
denotes the irrelevant ideal S, &S, ® - of S. -

(3.8) Proposition. Let M be indecomposable as a graded module and assume
that g(S5,,M)>1. Then F is connected.

Proof. Let T,,T, C Ass(¥) nonempty and such that 7, UT, = Ass(¥ ). We
must show T, N T, # & (in Proj(S)). Considering 7, and 7, as sets of
prime ideals this comes up to prove that there are homogeneous prime ideals
q € Spec(S) — V(S,,), », € T}, p, € T, with p ,p, C q. This is clear by
(3.5)".

(3.9) Remark. The condition g(S,,,M) > 1 exactly means that there is a
canonical isomorphism (cf. [10])

M = @ H(Proj(S), F (n)).

This observation also immediately gives a proof of (3.8). In the case M = S
the connectivity of ¥ = ﬁpmj(s) exactly corresponds to the connectivity of
Proj(S) (see (3.4)(ii)) and thus is a classical subject of algebraic geometry. One
of the mostly used criteria for the connectedness of Proj(S) is the fact that
Proj(S) is connected iff its ring of global sections HO(Proj(S),@’ij(S)) =T

is a local ring. This is due to the observation that Spec(I') -~ Spec(R) is a
Grothendieck-Stein factor of the morphism 7z: Proj(S) — Spec(R) [8].
4. BLOWING UP

In this section let (R, m) be a local noetherian ring and let / C m be an
ideal of positive height. We want to study the blowing up morphism (cf. (1.3))

Bl (1) = Proj(R(I)) =5 Spec(R).
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Thereby we are mainly interested in connectivity of the exceptional fiber
(4.1) Fo(I) := m; ' (V(I)) = Proj(Gr(I))

of #, and of the complement

(4.2) Cr(l) := F(I) — 7} ' (m)

of the special fiber n,‘l(m) in exceptional fiber. First we give the following
connectedness-criterion for the exceptional fiber Fy(I), in which R denotes
the m-adic completion of R.

(4.3) Proposition. If Spec(R) — V(IR) is connected, the exceptional fiber F, (D)
is connected.

Proof. Assume that Spec(R)—V (IR) is connected. Let Z,,Z, be unions of ir-
reducible components of Bl,(/R) such that Z UZ, = Bl4(IR). As ht(IR) > 0
the canonical images 7,4(Z,), 7,4(Z,) C Spec(R) are again unions of irre-
ducible components and cover the whole set Spec(R). By our connectedness
assumption 7,,(Z,) N7, z(Z,) contains a point y € Spec(R) — V' (IR). In par-
ticular, y has one single preimage point x € Bl;(/R). So x must belong to
Z, N Z,. This shows that Bly(/R) is connected. Therefore Fg(I) must be
connected (cf. [6, (3.4) or 5, (2.5)]).

(4.4) Corollary. If g(I,R) > 1, the exceptional fiber Fy(I) is connected.

Proof. Passing to completion we get g(IR,R) > 1. Applying (3.5) with 4 =
M = R we see that Spec(R) — V(IR) is connected and thus may conclude by
(4.3).

Now we formulate a connectedness-criterion for the complement C(I). To
do so, we introduce the set 7(I) of all images of generic points of the excep-
tional fiber:

(4.5) T(I):= {m,(x)|x = generic point of F(I)}.

Using this notation we have

(4.6) Proposition. Assume that g(I,R) > 1 or that R is an excellent normal
domain. Then Cy(I) is connected if and only if T(I) satisfies the condition
(x) UnU,—{m}#@ VU,,U,CT(I) withU, U, # @ and U U, = T(I).
Proof. Clearly the connectedness of Cr(I) induces the condition ( * ). To prove
the converse, let 7, U T, be a decomposition of the set of all generic points
of Fgp(I) such that T, — nl_l(m) # @ (i = 1,2). It suffices to show that
T nT, - n,_l(m) is not empty. As T(I) satisfies the condition ( =), we find
apen(T,)nn,(T,) - {m}. We claim that the exceptional fiber Fp (1) of
the localized blowing-up BI R,(Ip) — Spec(R,) is connected. This follows from

(4.4), respectively from (4.3), as either g(I,,R))>1 oras (Rp)’\ is a domain
(cf. [9D).
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If we consider FRv(Ip) as a subset of F,(I), the observed connectedness
furnishes a point x € FR., (I,)n T,NnT,. As FR,, (I,)N n,_'(m) # J, we get our
claim.

Now, we want to give an estimate on the small connectedness-subdimension
c(Cr(I)) of Ck(I), which we define by

(4~7) .Q(CR(I)) = Q(ﬁproj(cr([))lcR(I)) < Q(CR(I))'
Defining #(I) according to (1.1)(ii) we get

(4.8) Proposition. Let 7(I) > 1 and assume that either Spec(R) — V(IR) is
connected or that g(I,R) > 1. Then Cy(I) is connected and satisfies
&(CR(D) 2 7(T) — 2.
Proof. By (4.3) or by (4.4), Fp(I) is connected. Now we apply (3.7) with
S=M=Gr(I).
(4.9) Example. Let (R, m) be a local Cohen—-Macaulay ring and let p € Spec(R)
be an almost complete intersection of height 2 > 1, which is a generic complete
intersection. Thus, denoting by u q(p) the minimal number of generators of the
localized ideal p, C R, (q € Spec(R)), we have u_(p) = h+1, uy(p) =h. We
put
U(p) :=={q € V(p)lht(a/p) =1, u (p) =h+1}.
By [4] we know
(i) #(p) = min{dim(R/p) — 1, depth(R/p)},
(i) if qe V(p), §:=q Gr(I), N Gr(I) is the unique minimal prime divisor
of q Gr(I) which retracts to q.
(ii1) q — § defines a 1-1 correspondence
U(p) U{p} < {x € Fg(p)|x generic } = ASS(GproiGriay))-

By (4.6) and (4.8) we get from (i) and (iii)

(iv) (a) Cg(p) is connected.

(b) c(Cr(p)) = c(Cg(p)) > min{dim(R/p) — 3, depth(R/p) — 2} .
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