ASYMPTOTIC DEPTH AND CONNECTEDNESS IN PROJECTIVE SCHEMES

M. BRODMANN

(Communicated by William C. Waterhouse)

ABSTRACT. Let $I \subseteq \mathfrak{m}$ be an ideal of a local noetherian ring (R,\mathfrak{m}) . Consider the exceptional fiber $\pi^{-1}(V(I))$ of the blowing-up morphism

$$\pi: \operatorname{Proj}\left(\bigoplus_{n\geq 0} I^n\right) \to \operatorname{Spec}(R)$$

and the special fiber $\pi^{-1}(m)$. We show that the complement set

$$\pi^{-1}(V(I)) - \pi^{-1}(\mathfrak{m})$$

is highly connected if the asymptotic depth of the higher conormal modules I^n/I^{n+1} is large.

1. Introduction

Let (R, m) be a local noetherian ring and let $I \subseteq R$ be an ideal of height > 0. Then it is known that the depths of the R-modules R/I^n and I^n/I^{n+1} take constant values t(I) resp. $\bar{t}(I)$ for all large n [2]:

(1.1)
$$(i) \operatorname{depth}(R/I^n) = t(I) \quad \forall n \gg 0,$$

$$(ii) \operatorname{depth}(I^n/I^{n+1}) = \bar{t}(I) \quad \forall n \gg 0.$$

t(I) and $\bar{t}(I)$ are called the asymptotic depths of R/I^n resp. of I^n/I^{n+1} . In [3] we have shown

$$(1.2) \bar{t}(I) \ge t(I).$$

It turns out that these asymptotic depths are related to the topology of the blowing-up of $\operatorname{Spec}(R)$ at I, which by definition is given by the canonical morphism

(1.3)
$$Bl(I) := Proj(\mathfrak{R}(I)) \xrightarrow{\pi_I} Spec(R),$$

where $\mathfrak{R}(I)$ stands for the Rees algebra $\bigoplus_{n\geq 0} I^n$ of I. It was noticed by Burch [7] that the dimension of the special fiber $\pi_I^{-1}(\mathfrak{m})$ of (1.3) is subject to the inequality $\dim(\pi_I^{-1}(\mathfrak{m})) < \dim(R) - \min_n \operatorname{depth}(R/I^n)$.

Received by the editors December 29, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 13C15, 14E05.

In [2] we gave an improvement of this, by showing that $\min_n \operatorname{depth}(R/I^n)$ may be replaced by the asymptotic $\operatorname{depth} t(I)$ of the rings R/I^n . In fact, we even may replace $\min_n \operatorname{depth}(R/I^n)$ by $\bar{t}(I)$ (cf. [3]):

(1.4)
$$\dim(\pi_I^{-1}(\mathfrak{m})) < \dim(R) - \overline{t}(I).$$

So, if the asymptotic depth $\bar{t}(I)$ is large, the special fiber $\pi_I^{-1}(\mathfrak{m})$ must be small. In this note we want to give a further result of this type. We namely shall prove that for large values of $\bar{t}(I)$ the complement

(1.5)
$$\pi_I^{-1}(V(I)) - \pi_I^{-1}(\mathfrak{m})$$

of the special fiber in the exceptional fiber $\pi_I^{-1}(V(I))$ is highly connected under certain additional conditions (4.8).

In fact we shall give our result in a more general context. Instead of the blowing-up morphism (1.3) we consider an arbitrary projective morphism $\pi\colon \operatorname{Proj}(S) \to \operatorname{Spec}(R)$ (induced by a homogeneous R-algebra S). We then choose a noetherian graded S-module $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and relate the depths of the R-modules M_n to the connectivity of the sheaf \mathscr{F} which is induced by M on $\operatorname{Proj}(S)$. Using the connectedness criteria for blowing-up given in [5], we immediately will obtain bounds of connectivity for the set (1.5).

2. Asymptotic depth in projective schemes

Throughout this section let (R, m) be a local noetherian ring and let $S = R \oplus S_1 \oplus S_2 \oplus \cdots (S_n \neq 0 \ \forall n \gg 0)$ be a homogeneous noetherian R-algebra. So we may write $S = R[a_1, \ldots, a_r]$ with $a_1, \ldots, a_r \in S_1$. We consider the canonical morphisms

$$(2.1) \gamma \colon \operatorname{Spec}(S) \to \operatorname{Spec}(R), \pi \colon \operatorname{Proj}(S) \to \operatorname{Spec}(R).$$

Moreover, let $M=\bigoplus_{n\in\mathbb{Z}}M_n$ $(M_n\neq 0\ \forall n\gg 0)$ be a finitely generated, graded essential S-module.

Let \mathscr{F} be the coherent sheaf $(\neq 0)$ induced by M on Proj(S)

$$\mathscr{F} := \tilde{M}.$$

Finally we introduce

$$(2.3) \qquad \operatorname{depth}_*(M) := \min\{\operatorname{depth}(M_n) | n \in \mathbb{Z}\}.$$

(We make use of the convention depth $(0) = \infty$.) Denoting the *grade* of M with respect to an ideal $I \subseteq S$ by g(I, M) (by definition this is the maximal length of M-regular sequences in I), we also may write

$$(2.3)' \qquad \operatorname{depth}_{\star}(M) = g(\mathfrak{m}S, M).$$

This is easily seen in expressing depth and grade by the vanishing of local cohomology and observing the natural isomorphisms $H^i_{mS}(M) \cong \bigoplus_{n \in \mathbb{Z}} H^i_m(M)$.

- (2.4) **Proposition.** (i) $\bigcup_{n\in\mathbb{Z}} \operatorname{Ass}(M_n) = \gamma(\operatorname{Ass}(M))$.
 - (ii) $\operatorname{depth}_{\star}(M) = \min \{ \operatorname{depth}(M_n) | \mathfrak{p} \in \gamma^{-1}(\mathfrak{m}) \}$.
- *Proof.* (i) After an eventual localization it suffices to show that m belongs to $Ass(M_n)$ for some n iff it belongs to $\gamma(Ass(M))$. The first statement is equivalent to $depth_*(M) = 0$, whereas the second one means $g(\mathfrak{m}S, M) = 0$. This allows to conclude by (2.3)'.
- (ii) The right-hand side of the stated equality is just g(mS, M). So we conclude again by (2.3)'.
- (2.5) **Proposition.** For all sufficiently large $n \in \mathbb{N}$, the following statements are true:
 - (i) $\operatorname{Ass}(M_n) = \pi(\operatorname{Ass}(\mathscr{F}))$.
 - (ii) $\operatorname{depth}(M_n) = \min \{ \operatorname{depth}(\mathscr{F}_x) | x \in \pi^{-1}(\mathfrak{m}) \}$.
- Proof. (i) After an eventual extension of R we may assume that R/m is infinite. If we consider the points of $\operatorname{Proj}(S)$ as essential prime ideals in S, $\operatorname{Ass}(\mathscr{F})$ is exactly the set of essential members of $\operatorname{Ass}(M)$. So there is an $n_0 \in \mathbb{Z}$ with $\operatorname{Ass}(\mathscr{F}) = \operatorname{Ass}(M_{\geq n_0})$, where $M_{\geq n_0}$ stands for the submodule $\bigoplus_{n\geq n_0} M_n$ of M. Thus, replacing M by $M_{\geq n_0}$, we may write $\operatorname{Ass}(\mathscr{F}) = \operatorname{Ass}(M)$, hence $\pi(\operatorname{Ass}(\mathscr{F})) = \gamma(\operatorname{Ass}(M))$. Now, by our choice of M, $\operatorname{Ass}(M)$ has only essential members. So none of the (finitely many) $\mathfrak{p} \in \operatorname{Ass}(M)$ contains S_1 . As R/m is infinite this allows to choose an element $f \in S_1$ which avoids all members of $\operatorname{Ass}(M)$. We thus obtain injections $M_n \xrightarrow{f} M_{n+1}$, which show that $\operatorname{Ass}(M_n) \subseteq \operatorname{Ass}(M_{n+1})$, $\forall n \in \mathbb{Z}$. Now we conclude by (2.4)(i).
- (ii) We make induction on $d_M=\min\{\operatorname{depth}(\mathscr{F}_x)|x\in\pi^{-1}(\mathfrak{m})\}$. If $d_M=0$, we conclude by (i). If $d_M>0$, clearly $\mathfrak{m}\notin\pi(\operatorname{Ass}(\mathscr{F}))$. We thus find an element $a\in\mathfrak{m}$ which avoids all members of $\pi(\operatorname{Ass}(\mathscr{F}))$. By (i), a becomes M_n -regular for all $n\gg 0$. So for all sufficiently large n we have $\operatorname{depth}(M_n/aM_n)=\operatorname{depth}(M_n)-1$. Moreover by our choice of a, we have $\operatorname{depth}(\mathscr{F}_x/a\mathscr{F}_x)=\operatorname{depth}(\mathscr{F}_x)-1$, thus $d_{M/aM}=d_M-1$. So we conclude applying the hypothesis of induction to M/aM.

We introduce the following notations:

(i)
$$\operatorname{Ass}^*(M) := \pi(\operatorname{Ass}(\mathscr{F})) = \operatorname{Ass}(M_n) \quad \forall n \gg 0$$
,

(2.6)

(ii)
$$\operatorname{depth}^*(M) := \min\{\operatorname{depth}(\mathscr{F}_x) | x \in \pi^{-1}(\mathfrak{m})\} = \operatorname{depth}(M_n) \quad \forall n \gg 0.$$

 $\operatorname{Ass}^*(M)$ is called the asymptotic set of prime divisors of M_n whereas $\operatorname{depth}^*(M)$ is called the asymptotic depth of M_n . We notice

(2.7)
$$\begin{aligned} \text{(i) } & \operatorname{Ass}^*(M) = \gamma(\operatorname{Ass}(M_{\geq n})) \quad \forall n \gg 0 \,, \\ \text{(ii) } & \operatorname{depth}^*(M) = \operatorname{depth}_*(M_{>n}) \quad \forall n \gg 0. \end{aligned}$$

As an application of our previous results we want to prove

(2.8) **Corollary.** $\dim(\operatorname{Supp}(\mathscr{F}) \cap \pi^{-1}(\mathfrak{m})) \leq \dim(\operatorname{Proj}(S)) - \operatorname{depth}^*(M)$.

Proof. Let x be a generic point of $\operatorname{Supp}(\mathscr{F}) \cap \pi^{-1}(\mathfrak{m})$. By (2.5)(ii) we have $\operatorname{depth}(\mathscr{F}_x) \geq \operatorname{depth}^*(M)$; thus $\dim(\mathscr{O}_{\operatorname{Proi}(S),x}) \geq \operatorname{depth}^*(M)$. This induces

$$\dim(\overline{\{x\}}) \leq \dim(\operatorname{Proj}(S)) - \dim(\mathscr{O}_{\operatorname{Proj}(S),x}) \leq \dim(\operatorname{Proj}(S)) - \operatorname{depth}^*(M)\,,$$

hence our claim.

- (2.9) Remark. (i) Let (R, m) be noetherian and local and let $I \subseteq m$ be an ideal of positive height. Let $Gr(I) = \bigoplus_{n \ge 0} I^n/I^{n+1}$ be the associated graded ring of I. Applying (2.5)(ii) with S = M = Gr(I), we obtain the asymptotic stability of $depth(I^n/I^{n+1})$ for $n \gg 0$ (cf. [2, 3]).
 - (ii) Let (R, m) and $I \subseteq R$ as in (i). Consider the canonical diagram

$$\operatorname{Bl}_R(I) = \operatorname{Proj}(R(I)) \xrightarrow{\pi_I} \operatorname{Spec}(R)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\pi^{-1}(V(I)) = \operatorname{Proj}(\operatorname{Gr}(I)) \xrightarrow{\overline{\pi}_I} \operatorname{Spec}(R/I)$$

Then, applying (2.8) to S = M = Gr(I) and observing that $\dim(\operatorname{Proj}(Gr(I)) = \dim(R) - 1$ we get $\dim(\pi_I^{-1}(\mathfrak{m})) = \dim(\overline{\pi}_I^{-1}(\mathfrak{m}/I)) \le \dim(R) - 1 - \overline{\iota}(I)$. This proves again (1.4). In the same way we get the asymptotic stability of the sets $\operatorname{Ass}(I^n/I^{n+1})$ which is shown in [1].

3. Connectedness-subdimension

We define the *subdimension* $\underline{\dim}(Z)$ of a closed set Z in a noetherian scheme X as the minimal codimension (in Z) of all closed points $x \in Z$. Thus we may write

$$\underline{\dim}(Z) = \min\{\dim_{x}(Z) | x \in Z \text{ closed }\} \qquad (\leq \dim(Z)).$$

To be complete we define $\dim(\emptyset) = \underline{\dim}(\emptyset) = -1$.

If $Z \subseteq X$ is a closed subset, we define the *connectedness-subdimension* of Z as follows:

(3.1)
$$\underline{c}(Z) := \min\{\underline{\dim}(W)|W \subseteq Z \text{ closed}, Z - W \text{ disconnected}\}.$$

Thereby the empty set \varnothing is considered as disconnected. So we have $\underline{c}(Z) \ge -1$ with $\underline{c}(Z) \ge 0$ iff Z is connected. Comparing with the *connectedness-dimension* c(Z) introduced as in [6], we obviously have $\underline{c}(Z) \le c(Z)$. If $Z \ne \varnothing$ we have

$$\underline{c}(Z) = \min\{\underline{\dim}(Z_1 \cap Z_2)\},\,$$

where Z_1 and Z_2 are unions of irreducible components of Z such that $Z=Z_1\cup Z_2$; Z_1 , $Z_2\neq\varnothing$. Now, let $\mathscr{F}\neq0$ be a coherent sheaf over X. In view

of (3.2) it is natural to define the *connectedness-subdimension* of \mathcal{F} by the formula

$$(3.3) \qquad \underline{c}(\mathscr{F}) := \min\{\underline{\dim}(\bar{T}_1 \cap \bar{T}_2) | T_1 \cup T_2 = \mathrm{Ass}(\mathscr{F}), T_1, T_2 \neq \emptyset\}.$$

To be complete we define $\underline{c}(0) = -1$. We say that a coherent sheaf \mathscr{F} is connected if $\underline{c}(\mathscr{F}) \geq 0$. Obviously we have

(3.4) (i)
$$\underline{c}(\mathscr{F}) = \min\{\underline{c}(\operatorname{Supp}(\mathscr{F})), \dim\overline{\{x\}}|x \in \operatorname{Ass}(\mathscr{F})\},$$

(ii) \mathscr{F} connected \iff Supp (\mathscr{F}) connected.

To relate depths and connectivity for sheaves we prove

(3.5) **Lemma.** Let A be a noetherian ring, let $I \subseteq A$ be an ideal, and let $M \neq 0$ be an indecomposable finitely generated A-module with g(I,M) > 1. Let $T_1, T_2 \subseteq \operatorname{Ass}(M)$ such that $T_1, T_2 \neq \emptyset$, $T_1 \cup T_2 = \operatorname{Ass}(M)$. Then $\overline{T}_1 \cap \overline{T}_2 \nsubseteq V(I)$.

Proof. Suppose $\bar{T}_1 \cap \bar{T}_2 \subseteq V(I)$. Put $J_i = \bigcap_{\mathfrak{p} \in T_i} \mathfrak{p}$ (i=1,2). Then $I \subseteq \sqrt{J_1 + J_2}$. In particular we have $g(J_1 + J_2, M) \ge g(I, M) > 1$, $g(J_i, M) = 0$ (i=1,2) and $J_1 \cap J_2 \subseteq \sqrt{\operatorname{ann}(M)}$. Considering the following piece of the Mayer-Vietoris sequence for local cohomology:

$$H^0_{J_1+J_2}(M) o H^0_{J_1}(M) \oplus H^0_{J_2}(M) o H^0_{J_1\cap J_2}(M) o H^1_{J_1+J_2}(M)$$
 ,

we get $H^0_{J_1}(M)\oplus H^0_{J_2}(M)\cong H^0_{J_1\cap J_2}(M)=M$, $H^0_{J_i}(M)\neq 0$. This contradicts the assumption that M is indecomposable.

We also shall need the following graded version of (3.5), which is shown in the same way using "graded" local cohomology.

(3.5) Lemma. Let A be a noetherian graded ring, let $I \subseteq A$ be a graded ideal, and let $M \neq 0$ be a finitely generated graded A-module, which is indecomposable in the category of graded A-modules. Let g(I,M) > 1 and let $T_1, T_2 \subseteq Ass(M)$ such that $T_1, T_2 \neq \emptyset$, $T_1 \cup T_2 = Ass(M)$. Then $\overline{T}_1 \cap \overline{T}_2 \nsubseteq V(I)$.

As an application of (3.5) we get

(3.6) **Lemma.** Let X be a noetherian scheme and let \mathscr{F} be a connected coherent sheaf over X such that the stalk \mathscr{F}_y is an indecomposable $\mathscr{O}_{X,y}$ -module for each closed point y of $\operatorname{Supp}(\mathscr{F})$. Let $Z \subseteq X$ be a closed set, which contains all closed points of $\operatorname{Supp}(\mathscr{F})$. Finally assume that $d_Z := \min\{\operatorname{depth}(\mathscr{F}_x) | x \in Z\} > 1$.

Then the restriction $\mathcal{F}|X-Z$ of \mathcal{F} to the open subset X-Z is connected and satisfies the inequality $\underline{c}(\mathcal{F}|X-Z) \geq d_Z-2$.

Proof. As $d_Z>0$ we have $\operatorname{Ass}(\mathscr{F}|X-Z)=\operatorname{Ass}(\mathscr{F})$. Now let T_1 , $T_2\subseteq\operatorname{Ass}(\mathscr{F})$ be nonempty and such that $T_1\cup T_2=\operatorname{Ass}(\mathscr{F})$. Denote by \bar{T}_1 and \bar{T}_2 their closures in X. As \mathscr{F} is connected we have $\bar{T}_1\cap\bar{T}_2\neq\varnothing$. So we find a closed point $y\in\bar{T}_1\cap\bar{T}_2$. By our assumption we have $y\in Z$, and \mathscr{F}_y is indecomposable. Let $I\subseteq\mathscr{O}_{X,y}$ be the vanishing ideal of $\bar{T}_1\cap\bar{T}_2$ at y. By (3.5) we have $g(I,\mathscr{F}_y)\leq 1$. Let $J\subseteq\mathscr{O}_{X,y}$ be the vanishing ideal of Z at Z0 and let

 $\mathfrak p$ be a minimal prime divisor of I+J. Then clearly we have $g(\mathfrak p,\mathscr F_y)\geq d_Z$. This induces $\operatorname{ht}(\mathfrak p/I)\geq d_Z-1$; thus $\dim_x(\bar T_1\cap \bar T_2)\geq d_Z-2$ for all closed points x of $\bar T_1\cap \bar T_2-Z$, which satisfy $y\in \overline{\{x\}}$. Making y run through all closed points of $\bar T_1\cap \bar T_2$, we obtain $\dim(\bar T_1\cap \bar T_2-Z)\geq d_Z-2$. This proves our claim.

We now return to the morphism $\pi \colon \operatorname{Proj}(S) \to \operatorname{Spec}(R)$ defined in (2.1) and look at the connectivity of the sheaf \mathscr{F} induced by a noetherian, graded, essential S-module $M = \bigoplus_{n \in \mathbb{Z}} M_n$ (cf. (2.2)). Defining depth*(M) according to (2.3) we have

(3.7) **Proposition.** Assume that \mathscr{F} is connected and that the stalks of \mathscr{F} are indecomposable in all closed points of $\operatorname{Supp}(\mathscr{F})$. Let $\operatorname{depth}^*(M) > 1$. Then the restriction $\mathscr{F}|(\operatorname{Proj}(S) - \pi^{-1}(\mathfrak{m}))|$ is connected and satisfies the inequality

$$\underline{c}(\mathscr{F}|(\operatorname{Proj}(S) - \pi^{-1}(\mathfrak{m}))) \ge \operatorname{depth}^*(M) - 2.$$

Proof. Apply (3.6) with $Z = \pi^{-1}(m)$ and use (2.5)(ii).

We notice the following criterion for the connectedness of \mathscr{F} , in which $S_{\geq 1}$ denotes the irrelevant ideal $S_1 \oplus S_2 \oplus \cdots$ of S.

(3.8) **Proposition.** Let M be indecomposable as a graded module and assume that $g(S_{>1}, M) > 1$. Then \mathcal{F} is connected.

Proof. Let $T_1, T_2 \subseteq \operatorname{Ass}(\mathscr{F})$ nonempty and such that $T_1 \cup T_2 = \operatorname{Ass}(\mathscr{F})$. We must show $\bar{T}_1 \cap \bar{T}_2 \neq \emptyset$ (in $\operatorname{Proj}(S)$). Considering T_1 and T_2 as sets of prime ideals this comes up to prove that there are homogeneous prime ideals $\mathfrak{q} \in \operatorname{Spec}(S) - V(S_{\geq 1}), \ \mathfrak{p}_1 \in T_1, \ \mathfrak{p}_2 \in T_2$ with $\mathfrak{p}_1, \mathfrak{p}_2 \subseteq \mathfrak{q}$. This is clear by (3.5)'.

(3.9) Remark. The condition $g(S_{\geq 1}, M) > 1$ exactly means that there is a canonical isomorphism (cf. [10])

$$M \xrightarrow{\cong} \bigoplus_{n} H^{0}(\operatorname{Proj}(S), \mathscr{F}(n)).$$

This observation also immediately gives a proof of (3.8). In the case M=S the connectivity of $\mathscr{F}=\mathscr{O}_{\operatorname{Proj}(S)}$ exactly corresponds to the connectivity of $\operatorname{Proj}(S)$ (see (3.4)(ii)) and thus is a classical subject of algebraic geometry. One of the mostly used criteria for the connectedness of $\operatorname{Proj}(S)$ is the fact that $\operatorname{Proj}(S)$ is connected iff its ring of global sections $H^0(\operatorname{Proj}(S),\mathscr{O}_{\operatorname{Proj}(S)})=\Gamma$ is a local ring. This is due to the observation that $\operatorname{Spec}(\Gamma) \xrightarrow{\nu} \operatorname{Spec}(R)$ is a Grothendieck-Stein factor of the morphism $\pi\colon \operatorname{Proj}(S) \to \operatorname{Spec}(R)$ [8].

4. BLOWING UP

In this section let (R, m) be a local noetherian ring and let $I \subseteq m$ be an ideal of positive height. We want to study the blowing up morphism (cf. (1.3))

$$\operatorname{Bl}_R(I) = \operatorname{Proj}(\mathfrak{R}(I)) \xrightarrow{\pi_I} \operatorname{Spec}(R).$$

Thereby we are mainly interested in connectivity of the exceptional fiber

(4.1)
$$F_R(I) := \pi_I^{-1}(V(I)) = \text{Proj}(Gr(I))$$

of π_i , and of the complement

(4.2)
$$C_R(I) := F_R(I) - \pi_I^{-1}(\mathfrak{m})$$

of the special fiber $\pi_I^{-1}(\mathfrak{m})$ in exceptional fiber. First we give the following connectedness-criterion for the exceptional fiber $F_R(I)$, in which \hat{R} denotes the m-adic completion of R.

(4.3) **Proposition.** If $\operatorname{Spec}(\hat{R}) - V(I\hat{R})$ is connected, the exceptional fiber $F_R(I)$ is connected.

Proof. Assume that $\operatorname{Spec}(\hat{R}) - V(I\hat{R})$ is connected. Let Z_1 , Z_2 be unions of irreducible components of $\operatorname{Bl}_R(I\hat{R})$ such that $Z_1 \cup Z_2 = \operatorname{Bl}_{\hat{R}}(I\hat{R})$. As $\operatorname{ht}(I\hat{R}) > 0$ the canonical images $\pi_{I\hat{R}}(Z_1)$, $\pi_{I\hat{R}}(Z_2) \subseteq \operatorname{Spec}(\hat{R})$ are again unions of irreducible components and cover the whole set $\operatorname{Spec}(\hat{R})$. By our connectedness assumption $\pi_{I\hat{R}}(Z_2) \cap \pi_{I\hat{R}}(Z_1)$ contains a point $y \in \operatorname{Spec}(\hat{R}) - V(I\hat{R})$. In particular, y has one single preimage point $x \in \operatorname{Bl}_{\hat{R}}(I\hat{R})$. So x must belong to $Z_1 \cap Z_2$. This shows that $\operatorname{Bl}_{\hat{R}}(I\hat{R})$ is connected. Therefore $F_R(I)$ must be connected (cf. [6, (3.4) or 5, (2.5)]).

(4.4) Corollary. If g(I,R) > 1, the exceptional fiber $F_R(I)$ is connected.

Proof. Passing to completion we get $g(I\hat{R}, \hat{R}) > 1$. Applying (3.5) with $A = M = \hat{R}$ we see that $\operatorname{Spec}(\hat{R}) - V(I\hat{R})$ is connected and thus may conclude by (4.3).

Now we formulate a connectedness-criterion for the complement $C_R(I)$. To do so, we introduce the set T(I) of all images of generic points of the exceptional fiber:

(4.5)
$$T(I) := \{\pi_I(x) | x = \text{ generic point of } F_R(I)\}.$$

Using this notation we have

(4.6) **Proposition.** Assume that g(I,R) > 1 or that R is an excellent normal domain. Then $C_R(I)$ is connected if and only if T(I) satisfies the condition

 $(*) \ \ \bar{U}_1 \cap \bar{U}_2 - \{\mathfrak{m}\} \neq \varnothing \quad \forall U_1\,, U_2 \subseteq T(I) \ \ with \ \ U_1\,, U_2 \neq \varnothing \ \ and \ \ U_1 \cup U_2 = T(I).$ Proof. Clearly the connectedness of $C_R(I)$ induces the condition (*). To prove the converse, let $T_1 \cup T_2$ be a decomposition of the set of all generic points of $F_R(I)$ such that $\bar{T}_i - \pi_I^{-1}(\mathfrak{m}) \neq \varnothing \ (i=1,2)$. It suffices to show that $\bar{T}_1 \cap \bar{T}_2 - \pi_I^{-1}(\mathfrak{m})$ is not empty. As T(I) satisfies the condition (*), we find a $\mathfrak{p} \in \pi_I(\overline{T}_1) \cap \pi_I(\overline{T}_2) - \{\mathfrak{m}\}$. We claim that the exceptional fiber $F_{R_\mathfrak{p}}(I_\mathfrak{p})$ of the localized blowing-up $\mathrm{Bl}_{R_\mathfrak{p}}(I_\mathfrak{p}) \to \mathrm{Spec}(R_\mathfrak{p})$ is connected. This follows from (4.4), respectively from (4.3), as either $g(I_\mathfrak{p}\,,R_\mathfrak{p})>1$ or as $(R_\mathfrak{p})^\wedge$ is a domain (cf. [9]).

If we consider $F_{R_{\mathfrak{p}}}(I_{\mathfrak{p}})$ as a subset of $F_{R}(I)$, the observed connectedness furnishes a point $x \in F_{R_{\mathfrak{p}}}(I_{\mathfrak{p}}) \cap \bar{T}_1 \cap \bar{T}_2$. As $F_{R_{\mathfrak{p}}}(I_{\mathfrak{p}}) \cap \pi_I^{-1}(\mathfrak{m}) \neq \emptyset$, we get our claim.

Now, we want to give an estimate on the *small connectedness-subdimension* $\dot{\underline{c}}(C_R(I))$ of $C_R(I)$, which we define by

$$\underline{\dot{c}}(C_R(I)) := \underline{c}(\mathscr{O}_{\mathsf{Proj}(\mathsf{Gr}(I))}|C_R(I)) \le \underline{c}(C_R(I)).$$

Defining $\bar{t}(I)$ according to (1.1)(ii) we get

(4.8) **Proposition.** Let $\bar{t}(I) > 1$ and assume that either $\operatorname{Spec}(\hat{R}) - V(I\hat{R})$ is connected or that g(I,R) > 1. Then $C_R(I)$ is connected and satisfies

$$\underline{\dot{c}}(C_R(I)) \ge \bar{t}(I) - 2.$$

Proof. By (4.3) or by (4.4), $F_R(I)$ is connected. Now we apply (3.7) with S = M = Gr(I).

(4.9) **Example.** Let (R, \mathfrak{m}) be a local Cohen-Macaulay ring and let $\mathfrak{p} \in \operatorname{Spec}(R)$ be an almost complete intersection of height h>1, which is a generic complete intersection. Thus, denoting by $\mu_{\mathfrak{q}}(\mathfrak{p})$ the minimal number of generators of the localized ideal $\mathfrak{p}_{\mathfrak{q}} \subseteq R_{\mathfrak{q}}$ $(\mathfrak{q} \in \operatorname{Spec}(R))$, we have $\mu_{\mathfrak{m}}(\mathfrak{p}) = h+1$, $\mu_{\mathfrak{p}}(\mathfrak{p}) = h$. We put

$$U(\mathfrak{p}):=\{\mathfrak{q}\in V(\mathfrak{p})|\,\mathrm{ht}(\mathfrak{q}/\mathfrak{p})=1\,,\,\,\mu_{\mathfrak{q}}(\mathfrak{p})=h+1\}.$$

By [4] we know

- (i) $\bar{t}(\mathfrak{p}) = \min\{\dim(R/\mathfrak{p}) 1, \operatorname{depth}(R/\mathfrak{p})\}\$,
- (ii) if $q \in V(\mathfrak{p})$, $\tilde{\mathfrak{q}} := \mathfrak{q} \operatorname{Gr}(I)_{\mathfrak{q}} \cap \operatorname{Gr}(I)$ is the unique minimal prime divisor of $\mathfrak{q} \operatorname{Gr}(I)$ which retracts to \mathfrak{q} .
- (iii) $q \rightarrow \tilde{q}$ defines a 1-1 correspondence

$$U(\mathfrak{p}) \cup \{\mathfrak{p}\} \xleftarrow{\sim} \{x \in F_R(\mathfrak{p}) | x \text{ generic } \} = \mathrm{Ass}(\mathscr{O}_{\mathrm{Proj}(\mathrm{Gr}(\mathfrak{p}))}).$$

By (4.6) and (4.8) we get from (i) and (iii)

(iv) (a) $C_R(\mathfrak{p})$ is connected.

(b)
$$\underline{\dot{c}}(C_R(\mathfrak{p})) = \underline{c}(C_R(\mathfrak{p})) \ge \min\{\dim(R/\mathfrak{p}) - 3, \operatorname{depth}(R/\mathfrak{p}) - 2\}$$
.

REFERENCES

- M. Brodmann, Asymptotic stability of Ass(M/IⁿM), Proc. Amer. Math. Soc. 74 (1979), 16– 18.
- 2. ____, On the asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), 35-39.
- 3. ____, Some remarks on blow-up and conormal cones, Proc. Conf. Commutative Algebra (Trento, 1981), Lecture Notes in Pure and Appl. Math., 84, Dekker, New York, 1983.
- 4. ____, Rees rings and form rings of almost complete intersections, Nagoya Math. J. 88 (1982), 1-16.
- 5. ____, A few remarks on blowing-up and connectedness, J. Reine Angew. Math 370 (1986), 52-60.
- 6. M. Brodmann and J. Rung, Local cohomology and the connectedness dimension in algebraic varieties, Comment. Math. Helv. 61 (1986), 481-490.
- 7. L. Burch, Codimension and analytic spread, Proc. Cambridge Philos. Soc. 72 (1972), 369-373.

- 8. A. Grothendieck, EGA. III, Inst. Hautes Études Sci. Publ. Math. 11 (1961).
- 9. ____, EGA. IV, Inst. Hautes Études Sci. 24 (1969).
- 10. J. P. Serre, Faisceaux algébriques cohérents, Ann. of Math. 61 (1955), 197-278.

Mathematisches Institut der Universität, Rämistrasse 74, CH-8001 Zuerich, Switzerland