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FIXED POINTS OF UNITARY Z/p -MANIFOLDS
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(Communicated by Haynes R. Miller)

Abstract. Let G = Z/ps ( p an odd prime). We show that restricting the

local representations in a unitary G-manifold M with isolated fixed points

results in severe restrictions on the number of fixed points (counted with the

sign of their orientation), paralleling results obtained by Conner and Floyd in

the case G = Z/p . Specifically, the number of noncancelling fixed points is

either zero or divisible by p" , where n —» oo as the dimension of M —» oo .

This result also parallels phenomena in framed G-manifolds, as discussed by

the first author in a previous paper.

Introduction

Conner and Floyd proved the following result in [CF, 40.1]. Let G — Z/p

( p an odd prime) and let M be a smooth unitary «-dimensional G-manifold

with isolated fixed points. Assume also that the local representations normal

to the fixed points coincide. Then if we denote the collection of fixed points,

counted with orientation, by Y, one has [Y] e p Q0 , where Q0 = Z is zero

dimensional unitary bordism, and where a(n) —* oo as n —> oo . In particular,

there cannot exist any unitary G-manifold with a single fixed point.

Here we show that the Conner and Floyd result generalizes directly to the case

G = Zjps for arbitrary s. (The precise result is stated in §2.) Note that the

generalization follows easily by induction on the order of G if either the local

representation possesses a nonzero fixed subspace by some nontrivial subgroup

K or if the manifold M in question contains only isolated fixed points by G ;

in the first instance one can restrict to the fixed set by K, and in the second

instance one can regard M as a Af-manifold. The general case, in which M

has isolated G-orbits of the form G/K for K ^ G, is far less tractable. The

analogous result for framed G-manifold appears in fact to require the full force

of the Segal conjecture [Wl]. In the absence of an analogous result for unitary

G-bordism, our proof here makes use of the eta invariant of Atiyah-Patodi-

Singer [APS], and uses the combinatorial formulas of Gilkey [Gl].
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2. Oriented G-manifolds modelled on a representation

In [Wl] the geometry of G-manifolds modelled on a fixed virtual represen-

tation y = (V - W) e RO(G) is studied. Such G-manifolds were originally

considered by Pulikowski [PI] and Kosniowski [Kl]. Here we recall the basic

definitions.

The letters V , W, Y and Z will be used to denote finite dimensional G-

invariant subspaces of the orthogonal G-module ^ = Ä°° , where R denotes

the regular representation of G endowed with its natural inner product. For

brevity, we write V < % ,  W < %? , and so on.

Definition 2.1. Let y = (V- W) e RO{G) and let M be a compact smooth G-

manifold. Then M has equivariant dimension y if, for each x e Int M (with

isotropy subgroup Gv c G), there is a smooth Gx-equivariant imbedding onto

an open set, 8X : Yx —► M taking 0 to x , where Yx is a Gv-module such that

Yx®W = V asa G^-module. Thus Yx represents the element y\G gRO(Gx).

We refer to such a manifold as a (smooth) y-manifold. If y is represented by

an actual G-module V < % , we refer to a y-manifold as a V-manifold.

Examples of y-manifolds include G-manifolds all of whose fixed sets are

connected and nonempty, and the boundaries of such manifolds; if M is a

y-manifold, then dM is a (y - l)-manifold. The tangent bundle xM of a

y-manifold M is also y-dimensional in the sense that the fiber over a typical

point x is Gv-equivalent to Y , where Y is as above. Similarly, its normal

bundle t\M is Z-dimensional for some (sufficiently large) G-module Z .

In the language of K-manifolds, our result takes the following form.

Theorem. Let G = Z/p5, assume that V < % has V = 0, and let M be any

unitary G-manifold of dimension nV (—V®---@V). Then the G-fixed set Y

lies in pri-n)Q0 , where r(n) —> oo as n —► oo.

In §3, we reduce the theorem to a statement about induction from the maxi-

mal proper subgroup (Proposition 3.2), and prove the reduction in §5.

Corollary. No unitary G-manifold of dimension V can possess a single isolated

point fixed by G.

Proof. If the unitary G-manifold M contains a single isolated fixed point, then

so does M" = M x ■ • • x M for arbitrary n > 0 . Since the latter has dimension

nV , this is a contradiction.   D

3. The eta invariant

Let R(U) denote the complex representation ring of the unitary group, and

let R0{G) be the augmentation ideal of the representation ring of G. Then

Gilkey [Gl] discusses the eta invariant for free G-manifolds

»: R0(G) ®R(U)® ñLJBG+) -» Q/Z
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which completely detects unitary free G-bordism when G is any spherical space

form group. That is, if «(0 ,M) = 0 for all 0 e R0(G) <g> R{U), then M = 0.

In addition, Gilkey establishes the following properties.

Lemma 3.1. (a) If H c G and // M is a./ree unitary H-manifold, then nG{6,

GxH M) = nH(6\H, M), where nK denotes the eta invariant with respect to the

ambient group K, and where 6\H = r <g> 1(0), where r: R0{G) -* R0{H)

denotes the restriction homomorphism.

(b) If H c G anuí í/ Ai  is a free unitary G-manifold, then  nH(6,M) =

nG{i(d),M), where i(6) = (ind£®l)(0).

(c) If p e R0{G) and W is any fixed-point free representation of G, then

n{p,S(W)) — {p,ß{W))G, where the inner product is given on complex class

functions by {f ,f2) = \G\~l ^g^Gf{{g)f2{g), and where the construction of

ß(W) is given as follows. Let x denote the class function underlying W, and

take a(r) = det(r - l)/det(r). Then ß(W){g) = Tr(a(r(^)))_1 if g ¿ \, and

0 otherwise.   D

Further, one sees [Gl, remarks after Lemma 2.3] that if tp e R(U) and

p e R0(G), then n{p®<p,S{W)) = n(p-y/,S(W)), where i// e R(G) is suitably

constructed.

Now let V be any one-dimensional free unitary representation of G = Z/ps

(s>2), and let K = Z/ps~x c G. Denote the unit sphere in V" by SnV.

Proposition 3.2. Let [Sn] = p[Sn V] - [G xKSn V]. Then there exists p e RQ(G)

such that nG(p,Sn) has order p     , where r(n) —► oo as n —> oo.

The proof of Proposition 3.2 occupies §§4, 5. We should remark that the

exponent r(n) behaves erratically as a function of p and 5.

Proof of theorem. Assume the theorem holds for G = Z/p' with r < s — 1, and

let M be a unitary G-manifold of dimension n V and fixed set Y. Assume

first that V / 0 for some nontrivial subgroup K c G. Then M is a G/K-

manifold of dimension n VK with G/ A"-fixed set Y, and the conclusion follows

by the induction hypothesis. If on the other hand F is a free representation

(so that S(V) is free), consider the «F-dimensional unitary G-manifold

N = pM-GxKM,

where K = Z/p (and the minus sign indicates oppositely oriented complex

structure on a trivial two-dimensional summand of the normal bundle). If M

possesses a G-orbit Q of isolated fixed points with isotropy subgroup J of K,

then GxKM possesses p copies of -Q, so that the corresponding fixed point

orbits cancel in N. By attaching G-handles, one may remove such orbits to

obtain a unitary n F-dimensional G-manifold N with isolated fixed points a

copy C of [Y](p(G/G) - G/K), corresponding to the G-fixed set Y of M.

The complement of a regular neighborhood of C now gives a free null-bordism
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of [y][5n], and by Proposition 3.2 [Y] has the form pr(n', where r(n) —> oo

as n —► oo.   D

4. Divisibility properties in R0{G)

Let G = Z/ps, and let R{G) be the tf(G)-module R(G)/pR{G), where p

is the regular representation of G. Let R0(G) be the image of R0(G) in R(G)

induced by the inclusion. The eta invariant then factors through R0(G)®R(U)<8

Ú(BZ/ps+), since Ú(BZ/ps+) is generated as a Q^-moduleby the [SnV], where

the determining formula [Gl, Lemma 2.3] ignores the values of the relevant

class functions at 1 G G. We consider divisibility in R(G) by (1 — to), where

co is the character of the canonical one-dimensional unitary representation of

G.
Let e: Z[x] -+ Z be the augmentation, and let 5T = e~l(psZ). Let 0: ST -*

i?(G) be given by evaluation at co. Then Im0 c RQ{G), since, for p e ^,

writing p(x) — J2ii\^ix" with ¿- = ±1, zC,^, — 0 mod ps, one observes

that £/A1a/!(') « E/^,w"(') + £j,—i /> - fcp* E^-i /> for suitable A:, which

is divisible by ( 1 - co).

Lemma 4.1. In R{G), one has, for any m > 0, a sequence (t¡ > 0) with t{ > 0

and J2"=i ln = m > and a sequence (a¡ G Z - psZ) such that

( * )        d(p(x)) = (1 - w)" (a, + (1 - «),2(Ö2 + • ■ • + (1 - cofqn)...)

for some qn G R0(G). Further, if 6{p(x)) restricts to 0 in R(H), where H =

Z/p~l C.G, then ax G//"'z.

Proof. The first assertion follows easily by the above remarks, since one may

ensure divisibility by (I - co) at any stage by adding suitable a. G Z — //Z

in order to land in Im 0 . For the second assertion, passing to Z/ps~ , p(co)

restricts to Np as an element of R(H) where p is the regular representation

of H. Applying the augmentation map to both sides now gives N — 0, so that

p(co) = 0 in R(H). But if (1 - co)x = 0 in R{H), then x = A:/>, so that we

now have

(a1 + (l-w)ri(a2 + (l-£iJf(---)---) = 0

in R(H). Thus equals jV/> in R{H) again, so a, = 0   mod ps~  .    D

This factorization is far from unique; one may replace 9{p(x)) by 6{p(x)) +

co'(cop - 1), where co'(cop - 1) may be expressed as a polynomial in (a) - 1)

with integral coefficients. Further, if we relax the requirement that a. £ psZ,

then adding a suitable multiple of (/ - 1 , whose coefficient of ( 1 - co)p   is 1 ,

yields an expansion of the form (*) with at least one coefficient prime to p .

We shall take
/    n        , ps"'-l        , ps'' + \ 2ps''-\        . 2ps-' + \

p(x) = 1 + x + ■ ■ ■ + xp        +l+x +---+xr        +l+xp

+ • • • + X + 1 + X + ■ ■ ■ + X ,
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and use an expansion of the form (*) with the coefficient of (1 - co)p   prime

to p , and where the expansion will be continued as far as necessary.

5. Consequences in free Z///-bordism

Before proving the theorem, we need a preliminary result on free Z/p5-

bordism. Let a(n) denote the exponent in the order of [SnV] in free Z/p

bordism.

Now consider the order of

Sn=p[SnV]-[GxHSnV],

where H = Z/ps  ' c Z/p5 and V has character co  ' . Since [G xHSnV]

i[Sn V\H], one has, for a G i?0(G),

—n \ i —n

(I-ûT1)"/     \ (1-ftT1)"

= {(p-i)(l)>a,(l-co)  n) = (p(co)-a,(l-co) ")

= ((1 - cofia, + (1 - cof(a2 + • • ■ + (1 - co)'"qn) ■ ••) -a,(I - co)-")
El II \'l-^-r-'i —"\

(fl/-ff.(l-<») >.

¡>i

= ^a,7/(a,5(«-W,)n,
!>1

where «( = ¿Z',=i t¡, and where the sum on the left terminates when w/+1 > n ,

«(a,£>,S(«-M,)F

Note that the a- are independent of « (except insofar as the numbers of

terms we use), and that at least one ai may be taken to be prime to p . Partition

the set of integers > 1 as J0, U^5,, where k G^ iff ak = 0   mod p . Then



852 STEFAN WANER AND YIHREN WU

one has, with bi = ajp for i G ¿Px ,

w[a,2>,..S(«-M,)H = J2bM^,PS(n-Ul)V)+ £ akn(a,S(n - uk)V)
i>\ )      i€ä°, keä"2

= E biin^cSin - U¡)V) + r,(a,Sn_u¡)] + £ akn(a,S(n - uk)V)
ie&>\

2>«

ke£P2

nfjicSin-u^ + n   o, J2^{n - u¡ - ußV
;>o

+ E akn(a,S{n -uk)V)
k€â"2

: J2 b,rjH(a,S(n - u,)V) +    E    a>bMa>s(n ~ u< ~ ußv)
i€^\ jÇ0>\ ,/>0

+ E akn(a,S(n-uk)V)
ke¿?2

■■^2blnH(a,S(n-ui)V)+  £ b,bJtiH(o,S(n-ul-uJ)V) + ---

+ E akn(cr,S(n-uk)V)+     £     afi^o,S(n - ut - Uj)V) +
k€3°i i££?>2 j&3°\

Multiplying through by p now gives

^ainH{o,S{n-ui)V)+  ^  afi^^o ,S(n - u¡- ußV) + ■ ■ ■
i€¿?¡ i je&i

+ ^akn{o,pS{n-uk)V)+     J2     axb}r]{a ,pS{n - u¡- Uj)V) +
k€Ü°2 i€3*2 Je^i

= J2ainH(a,S(n-ui)V)+    ^    afilio,S(n~ M. -uf)V) + ■■■
i>\ i>í,jea",

J2aknH((T,S(n-uk)V)+     J2     afi^^o,S{n - u¡ - Uj)V)
keä*2 '€^2 je^i

+ E akr¡(o,pS(n-uk)V)+     ^     ap^c,pS(n -u¡-Uj)V) +
k€^2 ie&2 Jeâ",

^2ainH{cr,S(n-u¡)V)+    ]T    afi^^a,S{n - a, - u¡)V) + ■ ■ •
í> i je^ií>i

k€^2 i£^>2 J€-5>°\
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The first batch of summands now vanishes, leaving

pn(a,Sn) = akon{a, Sn_u   V) + terms in lower dimensional spheres of

the form ckn(a ,Sn_r^ V),

where kQ is the smallest element in S?2, and where a^ is prime to p. If

there exists an n such that Sn / 0, then an easy induction using the Smith

homomorphism and appropriate choices for n shows that the exponent of p

in the order of Sn approaches oo as n —► oo, completing the proof. But

Sn t¿ 0 since the order of SV is p5, whereas the coefficient of (1 - co)"1 in the

original (Lemma 4.4) expansion of 6(p(x)) is not in psZ, and we can arrange

that n - w, = 1 there.   D
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