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Abstract. We present a general result that, using the theory of symmetric func-

tions, produces several new classes of symmetric unimodal polynomials. The

result has applications to enumerative combinatorics including the proof of a

conjecture by R. Stanley.

1. Introduction

A sequence of real numbers a0 , ax, ... ,ad is said to be symmetric if ai —

ad_i for / = 0, ... , [f J and is said to be unimodal if there exists an index

0 < j < d such that ax < a2 <   ■   < a _, < a. > aj+x > ■ ■ ■ > ad .   A

polynomial 5Z,=oa/x' € ^M *s ca^Qd symmetric (respectively, unimodal) if

the sequence {aQ, ... ,ad} has the corresponding property.

Unimodal polynomials arise often in combinatorics, geometry, and algebra

and have been the subject of considerable research in recent years. Many dif-

ferent fields of mathematics have been used to prove that certain families of

polynomials are unimodal such as, for example, classical analysis (see, e.g., [14,

22]), linear algebra (see, e.g., [10, 11]), the representation theory of Lie algebras

and superalgebras (see, e.g., [12, 16, 17]), algebraic geometry (see, e.g., [19, 20]),

the theory of total positivity (see, e.g., [2, 3]), the theory of symmetric functions

(see, e.g., [4]), as well as the use of bijections and injections (see, e.g., [13]). We

refer the reader to [20] for an excellent survey of many of these techniques and

further references.

In this paper we also use the theory of symmetric functions to prove a general

result (Theorem 2, below) that produces many new infinite families of symmet-

ric unimodal polynomials. The result has a wide applicability, in particular, a

conjecture and a result of R. Stanley both follow as specializations of it.

For brevity reasons, we will call a nonzero polynomial a A-polynomial if it

has nonnegative coefficients and is both symmetric and unimodal. Note that

we require a A-polynomial to be nonzero.   If p(x)  is a A-polynomial then
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there is a unique n € N such that x"p(l/x) = p(x). We call the number n/2

the center of symmetry of p(x), and we write C(p) = n/2. So, for example,

C(x2 + 3.x3 + x4) = 3 and C(l + x) = 1/2. An elementary, though crucial

property of A-polynomials, which will be used repeatedly in this paper, is the

following.

Theorem 1. Let p(x) and q(x) be two A-polynomials. Then p(x)q(x) is a

A-polynomial and C(pq) = C(p) + C(q).

Theorem 1 is well known and a proof of it can be found, e.g., in [20], Propo-

sition 1.2, or in [1].

2. The main result

Let x, , x2, x3, ... be independent variables, and let R[[xx ,x2, ...]] be

the ring of formal power series in x, , x2, x^, ... with coefficients in R,

where R is a commutative ring with identity (we refer the reader to [8] for

the definition and the basic properties of ^[[x( ,x2, ...]]). An element p €

R[[xx ,x2, ...]] is called symmetric if p(xa{X, ,xa,2) ,...)= p(xx ,x2, ... ) for

def
all bijections o : P -> P (where P = {1,2,3, ...}), and is said to be bounded

if there is a constant M such that all the monomials appearing in p have degree

< M. We let
def

AR = {p € R[[xx ,x2, ... ]] ;p is symmetric}

and
def

AR = {p € AR ,p is bounded} ;

then AR and AR are subrings of R[[xx ,x2, ...]] and Afi c Âfi.   We call

AR the ring of symmetric formal power series and AR the ring of symmetric

functions, with coefficients in  R.   Note that AR c AR  since, for example,

ri/>i(i+xt)€AR\AR.

We will follow Chapter I of [9] for symmetric function notation and termi-

nology. In particular, we will denote by sx (respectively, hx, ex, mx, and

px) the Schur (respectively, complete homogeneous, elementary, monomial, and

power sum) symmetric functions, associated to the partition X. We also denote

by & the set all partitions, and by Al the subspace of all elements of A„ that

are homogeneous of degree n . If X = (Xx > X2 > ■ ■ ■ > X¡ > 0) 6 J3 then let

\X\ = J2i=x Xt, and also write X \- n if n — \X\. We call a basis {%}Ae9s of AQ

standard if, for all n e N, {ax : X \- n) is a basis of Aq . Note that a standard

basis {ax}Xe:y, is homogeneous and that deg(ax) = \X\.

We now come to the crucial definition of this paper. We say that an ordered

triple ({ax}Xe^ , {bx}Xe^, {cx}x&y,) of standard bases of AQ is compatible if:

(i) if cx = £„ fXßa   then fXß > 0, for all A, p. 6 & ;

(ii) if a^ = £„ gvXßav then gj, > 0, for all A, p., v € &.
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Conditions (i) and (ii) above are very mild and often automatically satisfied.

In fact, we have the following result.

Proposition 1. The ordered triple ({ax}X€S¡¡, {bx}X€£)i>, {cj}x&3^ is compatible in

each of the following cases:

(i) ax = bx = cx€{mx,ex,hx,sx,px};

(ii) ax - mx, and bx = cx€ {mx ,ex,hx, sx,px} ;

(iii) ax=px, and bx, cx€ {px, hx) ;

(iv) ax = sx, and bx, cx€ {ex,hx,sx}.

The proof of the preceding Proposition follows immediately from the results

in Chapter 1, §6 of [9] and from our definitions and is therefore omitted.

We are now in a position to state and prove the main result of this paper.

Theorem 2. Let {r^(q)} eS, {uv(q)}v€T be two families of A-polynomials,

where S, T ç ¿P and (0) <£ S. Suppose that there exists n, k € Z such

that

for all p€ S, v € T. For p € AP, define a polynomial R (q) by

E *,(«*, - , V'"* -
(1) &"'""*   »~E.€/>^
where ({ax}Xea¡¡, {b¿}¿€£? , {cj}xe^ /J a compatible triple of standard bases of

A0. Then RAq) isa A-polynomial and C(R) = (n\p\ + k)/2.
V P "     P

Proof. Note first that the symmetric formal power series 1 - J2ßeSrß(q)bß is

an invertible element of Q[g][[x, ,x2, ... ]] and that, therefore, the expression

on the RHS of ( 1 ) is a well defined element of AQ, ,. Now let

(2) * » £ fvlax

and

x

From our hypotheses and definitions it then follows that fvX = 0 unless \v\ =

\X\, g    = 0 unless |A| = \p\ + \p\, and

/ , > 0, g      > 0

for all v , X, p , p € 3° . Now rewrite ( 1 ) as

(4) E RP^K - E ¿ZRP^K^aA = E M«*,-
B€&> p€£? fi€S i'ET
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Substituting (2) and (3) in (4) and then equating the coefficients of ax on both

sides obtains

(5)        Í RM) = lZp^2ZßeSRp{Q)rß(q)gl + 2Z„eTuv(q)fvx     ¡f A*0,

I Rm(q) = fmo)u{o)(a)-

Proceeding by induction on |A|, the thesis is clearly true if |A| = 0. So fix X € 3°

with \X\ > 1 and assume that the thesis holds for all partitions such that \p\ <

\X\. Since (0) £ S, \p\ < \X\ and hence, by our induction hypothesis, R (x)

is a A-polynomial and C(R ) = (n\p\ + k)/2, for all partitions p appearing in

the first sum on the RHS of (5). But, by hypothesis, r (x) is a A-polynomial

and C(r ) = n\p\/2 for all p € S. Therefore, by Theorem 1, R (x)r (x) is a

A-polynomial and

rin r ^     n(\p\ + \p\) + kC(RPr,) =-2-

_ n\X\ + k~       2

for all p and p appearing in the first sum on the RHS of (5). On the other

hand, by our assumptions, all polynomials uv(x)fvX appearing in the second

sum on the RHS of (5) are also A-polynomials and

rt     i   \f   \       n\v\ + k

_ n\X\ + k"       2      '

So all polynomials on the RHS of (5) are A-polynomials with center of symme-

try equal to (n\X\ + k)/2 . Therefore their sum, -/^(x), is also a A-polynomial

with the same center of symmetry, as desired. This concludes the induction

step and hence the proof.   D

It may seem that Theorem 2 should be of limited use because it produces only

one sequence of A-polynomials starting with two such sequences. However, as

will be seen in the next section, in many applications the sequence {^(tf)}^^

is much more complicated than the two starting sequences {uv(q)}v€T and

3. Applications

Our first application of Theorem 2 is the following.

Proposition 2. For each partition X define a polynomial RAq) by

(6) ¿ZR^X
1

* 1-Et>2^ + ̂  +•■•+<?   )**

Then RAq) isa A-polynomial and C(RX) = \X\/2.
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Proof. Take ax - bx = cx = sA for X € &> and let 5 d= {(k) :k>2), rß(x) =f

q + q2 + --- + qM~x if p € S, T = {(0)}, p(0)(x) =f 1 . Then all the hypotheses

of Theorem 2 are satisfied with n = 1 and k = 0, and the result follows.   D

Proposition 2 verifies a conjecture of R. Stanley (see the remarks preceding

Proposition 7.8 in [20]).

Our second application is closely related to the previous one.

Proposition 3. For each partition X, define a polynomial TAq) by

(7) lZTM)h =
J2(l+q + --- + qk-U

S,

E, 2 k-l,
k>.(q + q  +••• + <?      )sk

2 k-U
,a +1

'k>2'

Then Tx(q) is a A-polynomial and C(TX) = (\X\ - l)/2.

Proof. Take ax, bx, cx, S and r (q) as in the proof of Proposition 2 and let

Td= {(k): k>l}, uv(q) = 1 + q + q2 + ■ ■ ■ + qM~x if v € T. Then all the

hypotheses of Theorem 2 are satisfied with n = 1 and k = -1 and the result

follows.   D

Proposition 3 is equivalent to a result of R. Stanley (see Proposition 7.7

in [20]). However, our proof only uses standard results from the theory of

symmetric functions while the sketch of proof given in [20] uses techniques

from the theory of representations of the symmetric group and from algebraic

geometry. To see that the two results are equivalent just observe that

E(l + q + ■ ■ ■ + q      )sk Y*
k>V k ,   , ¿-'A:>0

s

+1 =
A-

l-T,k>2ü + « +■■■ + * x      i-E,>2(4 + <7+••• + <? x

which is the definition used in Proposition 7.7 of [20].

4. Combinatorial consequences

In this section we look at some combinatorial properties of the polynomials

studied in the last section. Following [7, §3], we define a map R: AQ, , —>

QMtM] by

(8) *(p)^El*r- -xJwÇ,

where p € A and [x, ■ ■ -xn](p) denotes the coefficient of x, • • ■ xn in p (where

f]"=1 x, = 1 if n = 0). It is then easy to see that R is a ring homomorphism.

Also, from the combinatorial interpretation of the Schur functions (see, e.g., [9,

Equation (5.12), p. 42] or [15]) it follows immediately that, for any partition

X,

AtW
(9) ^) = /|X|ï
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where fÁ denotes the number of standard tableaux of shape X (see, e.g., [9, p.

5] for the definition of a standard tableau).

We may now prove the following result.

Proposition 4. Let Tx(q) be the polynomials defined in Proposition 3.   Then,

for n € P,

(io) EA(<?) = -U,(<7)>
/U-M

where An(q) is the nth Eulerian polynomial.

Proof. Multiplying both sides of (7) by q and then adding 1 gives

i + «i + E,>A
1 + E QTl{q)si =

»*& l-2^k>2(a + Q +••• + «    )**

applying R on both sides and using (8) and (9) we obtain

i + E «TMrfm =-i-;—
xeâ* W'     i--L-(qet-q-e9' + l)

d-Q)eq'
eqt - qé

t"

where, in the last equality, we have used a well known generating function for

Eulerian polynomials (see, e.g., Equation (5i) on p. 244 of [5]). Equating the

coefficients of t" yields (10), as desired,   o

Note that, by Proposition 3, the preceding result gives yet another proof of

the well known fact that the Eulerian polynomials are symmetric and unimodal.

Now let n € P and a € Sn  (where Sn is the symmetric group on n ele-
def

ments). An element i €[n] (where [n] = {1,2, ... , «}) is called an excedance

of a if a(i) > i ; denote the number of excedances of a by e(a). The permu-

tation o € Sn is called a derangement if a(i) jé i for / = 1,2,...,« (i.e., a

has no fixed points). We denote the set of all derangements of Sn by Dn , we

define polynomials dn(q) by

di) 4,<«)-E«*0.
aeDn

for n € P (so that dx(q) = 0), and let d0(q) d= 1 . Since dn(l) = \Dn\ we may

consider dn(q) as a ¡^-analogue of the derangement numbers. These are dif-

ferent, however, from other ¿/-derangement numbers that have been previously

considered in the literature (see, e.g., [6, 21]).

It is not hard to write down the exponential generating function for the poly-

nomials d (q).
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Propositions. Let dn(q) be the polynomials defined by (11). Then

1-Q
§rf-w5f-?r,V

Proof. It is well known (see, e.g., [18, Proposition  1.3.12]) that  An(q)

Ea€S„ Qe(a)+{ ■ Therefore, for n € P,

k(*) - E E *'(ff)
SC[n]tr€0|i|

It follows that

<*et¿Zdnti)l¿¡=   zZAn(^^ + a~l
n>0

(1-Q)eq

/=o

/" v-   .   .   J"

n>0 n>0

„It

e" - qe

(l-g)gg'

where in the last equality we have again used Equation (5i) on p. 244 of [5],

and the proof follows,   o

We can now prove the following result.

Proposition 6. Let Rx(q) be the polynomials defined in Proposition 2.   Then,

for n € N,

¿2fXRx(q) = dn(q).
U-n

Proof. Applying the homomorphism R defined by (8) to both sides of (6) yields

, M\ i

E RM)rw =-t
l-E,    io + q2 + --- + qk-%

¿-^k>2y ' k\

1-q

etq - qe'

«>0

and the proof follows.   Q

By Proposition 2, the following is an immediate consequence of the previous

result.
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Corollary 1. For « g P, the polynomials dn(q) defined by (11) are symmetric

and unimodal.

It would be interesting to have a combinatorial proof of this result.

Even though the techniques presented in this paper cannot be used to prove

it, we feel that the following stronger statement actually holds.

Conjecture. For n € P, the polynomials dn(q) defined by (11) have only real

zeros.

The conjecture has been verified for n < 14. It is possible that the techniques

used in [2] and [3] may be useful in attacking the above conjecture which, in

fact, is closely related to one of the conjectures appearing in §3.4 of [2].

Given the results of Propositions 4 and 6 it is natural to ask for a combinato-

rial interpretation of the polynomials Tx(q) and Rx(q) themselves, a problem

that had already been raised in [20]. Such a combinatorial interpretation has

recently been found by J. Stembridge and will appear in a forthcoming paper

of his.
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