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A REMARK ON STRONG MAXIMUM PRINCIPLE

FOR PARABOLIC AND ELLIPTIC SYSTEMS

XUEFENG WANG

(Communicated by Barbara L. Keyfitz)

Abstract. We give a strong maximum principle for some nonlinear parabolic

and elliptic systems with convex invariant regions. We also obtain a version of

the Hopf boundary lemma for the systems.

I. Introduction

The parabolic systems considered in this paper are of the form

(*)

W        n, n   \—* , .OU ^—v ,,. .OU -,
— -D(x,t,u) \_^ ail(x,t,u)j^^Ar\^Miix,t,u)—=fix,t,u)

i,j=X '       J        1 = 1 '

on Q x (0, T), where ■•0)-
Q is a domain in R" , D{x, t, u), and M¡{x, t, u) (i = 1,2,...,«) are

m x m matrix-valued functions on il x (0, I) x Rm, a¡Ax, t, u) {i, j =

I, ... , n) are real-valued functions.

Under the hypothesis that the differential operator on the left-hand side of

(*) is locally uniformly parabolic on ßx (0, T), that (*) has a C convex

invariant region S c Rm , and under some regularity conditions, we show that,

for (*), Weinberger's version of strong maximum principle holds, which says

that if there exists a (x*, t*) E £1 x (0, T) such that u{x*, t*) E dS, then

w(Q x (0, t*]) c dS. Moreover, if in addition that Q satisfies the interior

sphere condition, we prove that a version of the Hopf boundary lemma holds

for (*).

The weak and strong maximum principle for the case that in (*), D(x, t, u)

= I and M¡ {i = 1,... , n) are real-valued functions have been studied by

Weinberger [1], the boundary point lemma, however, was not mentioned in [1]
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(see the main theorem in §3). Our basic method is the same as Weinberger's.

The local defining functions of dS plays an important role in [1] for strong

maximum principle. Instead of choosing a general defining function as in [1],

we prefer the distance function of dS, making the proofs more geometric.

An extension of the boundary lemma was found by W. Troy [4] for non-

negative solution of the elliptic system

i,k=X J       k        ./ = 1 J        j=X

on Q, where i - I, ... , m .  C¡¡(x) > 0 on f2 for i / j, I < i, j < m .

The weak maximum principle for (*) has also been studied by K. N. Chueh,

C. C. Conley, and J. Smoller [2]. Their results show that for a C domain

S c Rm to be an invariant region we need at least the following.

Condition (c). S is convex and for any u E dS, the inward unit normal v(u)

at u is a left-eigenvector of D(x, t, u) and M.(x, t, u) (i = 1, ... , n), and

v(u)-f(x,t, u)>0 for all (i,/)gflx(OJ),

Therefore in this paper, we shall always assume that Condition (c) holds.

2. Preliminaries

All materials discussed in this section can be found in the Appendix of Chap-

ter 14 of [3], and they are included here for the reader's convenience.

First, let's recall some classical definitions. Suppose that 5 is a C domain

in Rm with dS ^ tf>. For any u EdS, let v(u) denote the unit inner normal

to dS at u . For a fixed u0E dS, construct a coordinate system (ux, ... , u )

such that the wm-axis lies in the direction v(uQ) and the origin is at uQ . Near

u0, dS can be expressed by um = tp(ux, ... , um_x). Then the Gaussian cur-

vature of dS at u0 is det[D tpiO)] and the principal curvatures of dS at u0

are the eigenvalues kx, ... , km_x of the matrix [D tpiO)]. Now if we rotate

the coordinate frame with respect to the um axis, we can let ux, ... ,um axes

lie on eigenvector directions corresponding to kx, ... , km, , respectively. We

call such a new coordinate system a principal coordinate system at u0 . In this

system [D2tpi0)] = diag[/c,, ..., km_x].

For u E Rm , the distance function d is defined by d(u) - dist(w, dS).

Lemma. Let S be a C domain in R'", k > 2 and dS / 0. Then there

exists an open iw.r.t the topology of S) subset G of S such that G D dû,,

d E C (G), and for any u E G, 3 unique y(u) E dS such that \u — y(u)\ =

d(u) (i.e. u = y(u) + v(y(u))d(u)), Dd(u) = v(y(u)), 1 - k¡(y(u))d(u) > 0
ii = I, ... , m-l) where k^yiu)) ii = 1, ... , m - 1 ) are principal curvatures

of dS at yiu). Moreover, for u E G, at a principal coordinate system at y(u),

[D2diu)] = diag ^i_ Zhm=l     o
l-M'"'*' *-**-!<*
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3. The main result and its proof

In the rest of this paper, we assume that u is a solution of {*), and regard

D, a¡j , and Mt in (*) as functions of (x, t) only due to the compositions.

Theorem. Suppose that D, a■., and Mi (1 < i, j < n) are locally bounded

on f2x(0, T), Dmxm and (<z;,)„x„ locally uniformly positive-definite on Qx

(0, T), and fix, t, u) is Lipschitz continuous in u locally uniformly with re-

sped to (x, t) on Qx(0, T). Assume also that there exists a C domain S in

Rm s.t. Condition (c) (/'« §1) is satisfied. Then if m(î2 x (0, T)) c S and there

exists (x*, t*)eQx(0, T) s.t. u = u(x*, t*) EdS.then u(Qx(0, t*]) cdS.

Furthermore, if there exists a x0 E du. and 0 < t0 < T s.t. Q satisfies the inte-

rior sphere condition at x0 and u is continuous at (x0, t0) with u(x0, t0) E dS,

then either u(Q x (0, t0]) c dS or tv(w(x0, /0)) -du/dn < 0. (if the directional

derivative exists), where n is any outward pointing direction to öQx(0, T) at

(xo> to) •

Proof. Take a bounded open neighborhood Q( c Í2 of x*  and 0 < tx < t*

s.t. w(Q, x [tx, t*]) c G where G is defined in the Lemma of §2.

Let p(x ,t,v) be the eigenvalue corresponding to eigenvector v of Z)(x, t)

and X¿(x, t, v) be the eigenvalue of M¡(x, t). Then on Q, x [tx, t*]

L= — -p(x,t,v(y{u{x,t)))) Y, aiAx't)dxdx
i,y=l '       /'

+ J2*i(x,t,v(y(u(x,t))))—
7=1 OX'

is uniformly parabolic (for definitions of v and y(u), see §2).

Let dix, t) = d(u(x, t)). Then on Q, x [tx, t*] we have

Ld = Dud(u)— - p(x,t, v(y(u)))

xffl(,   J v   d2d(u)duaduß      ™dd(u)     d2ua
Z^ %^'1)    2^ du du  dx dx + Lu du    • dxdx

1,7=1 \<*,ß=X "        P ' > a=X " '        J

+ 23A/(x,i,,(y(M)))E-r3F2-â3ci

= Dud(u)-£-I(x, t)-p(x,t, u(yiu)))Dudiu) ^ atJ{x, t)——
i, 7=1 '       J

+ f^Xi(x,t,v(y(u)))Dud(u)^-
7=1 OX'

(continues)
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= Dudiu)ft-Dudiu)Dix,t) ¿ au^^+D¿{u)J2M,£
7,7 = 1 ' J 7=1 '

-I(x,t)

= Dud(u)f(x, t,u)-I(x,t),

where / is defined by the second equality and in the third step we use the fact

that Dud(u) = v(yiu)) and Condition (c).

Now by Condition (c) again, v{y(u))fix, t, yiu)) > 0, i.e. Dudiy{uix, t)))-

fix, t, y{uix, t))) > 0 on f2, x [tx , t*]. Hence we have

Ld > Dudiuix, t))f(x,t,u{x, t)) - Dud(y(u(x, t)))

■ f(x,t,y(u(x, t)))-I(x,t)

= c(x, t) ■ (u(x, t) - y(u(x, t))) - I(x, t),

where the Äm-vector function c(x, t) is obtained by noticing d E C2(C7) and

/ is Lipschitz in u. c(x, t) is bounded on Q, x [tx , t*]. Since u = y(u) +

viyiu))diu), we have

Ld > c(x, t)iy(y{uix, t)))d(u(x, t)) - I(x, t),

i.e.

(1) Ld>c(x,t)d-I(x,t)   on fi, x [tx, t*],

where c is bounded.

Next, we prove / < 0 on Q, x [tx, t*].

Fix (x0, t0) E Qj x [tx, t*]. Since

A   d2d(u) dujuß

nyÍ! dUadUß dXi   dXj

is invariant under any parallel translation and rotation of u coordinate system,

we assume that we work in a principle coordinate system at .y(w(x0, t0)) E dS.

Then by the lemma

D2udiu{x0, ¿0)) = diag
K_       _*j_ g

1 -kxdiu{x0, r0))'      ' 1 -km_xd{u{x0, /„))

where kx, ... , km_x are the principal curvatures of dS at y(w(x0, tQ)). Thus

~(x0' lo) - ^aij(xo> lo) Ij l-kjiu'ix^t^dx"^0, /o)öx7(X°' ?o)'

i.e.

(2)

/ _y^Î ~ka A dua dua
-K' {o) - ¿^   \-kad{u{xQ,tQ)) Xi "'Mo'^df^O'^gf.^O' lo)-
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Since S is convex, k > 0, I < a < m - I . Recall in the lemma that 1 -

kaiuiu))diu) > 0 for u-E G   (a = 1 , ... , m - 1), so

-(x0,g<0   on fl, x [tx,t*].
P

In view of ( 1 ), we have

Ld>c(x,t)d   on Q, x [r,,/*].

By the classical strong maximum principle,  d = 0 on  Qx x [/,,?*], that is

u{Clx x [/, , t*]) c dS. Thus we have proved that u~ (dS) is relatively open

in Q x (0, t ]. Obviously u    (öS) is relatively closed in ilx(0,i ], hence

«(fix (o, t*])cds.
To prove the remaining part of the theorem, choose a bounded neighborhood

fi2 of x0 which is relatively open in Q as well as a small ô > 0 such that

w(Q2 x (i0 - ô, tQ A- ô)) c G. In the same way as above, we have for some

bounded C0

Ld > C0(x, t)d   on fi2 x (r0 - ô, t0 + Ô).

Thus the classical boundary point lemma gives the desired result.

Remark 1. If the strict inequality in Condition (c) holds for all (x, t) E f2 x

(0,T), then there is no (x\ t*)EQx (0, T) s.t. u{x*, t*)edS.

The observations in [1] are still true for (*), with slight modifications. Some

of them are included in the following two remarks.

Remark 2. In the above theorem, S can be the intersection of several C do-

mains S¡ which satisfy Condition (c). (In the case that S 's meet at angles

< 7t/2 , by this paper's proof, we just need S to satisfy Condition (c).)

Remark 3. Combining ( 1 ) with d = 0, we have / > 0. So 7 = 0. In view

of (2) we have that if ka > 0 for all a = I, ... , m - I , Dxu = 0. Thus we

can add to the theorem that if dS has positive Gaussian curvature everywhere,

then u is independent of x when 0 < r < /*.

Finally, concerning the elliptic systems corresponding to (*), we have

Remark 4. The theorem holds for elliptic systems corresponding to (*) with

obvious modifications. Furthermore, it's also possible to extend the boundary

point lemma for domains with corners (see [5, 6]).
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