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MULTIPLIER GROUPS OF PLANAR DIFFERENCE SETS

AND A THEOREM OF KANTOR

CHAT YIN HO AND ALEXANDER POTT

(Communicated by Warren J. Wong)

Abstract. A recent result of W. Kantor followed by a work of W. Feit has

rekindled interest in the longstanding conjecture of finite cyclic planes. In this

paper we prove that the order of the multiplier group equals the odd part of

the order of the automorphism group of a Singer group if and only if the order

of the plane is 2, 3, or 8. This yields another proof for Feit's result mentioned

above.

1. Introduction

Let G be a finite group of order v written multiplicatively. A subset D of G

is a planar difference set if each nonidentity element of G can be expressed as

xy~ for x, y € D exactly once. The study of finite cyclic planes is equivalent

to the study of finite cyclic groups with planar difference sets. (See, for example,

[B] or [HP].) The latter leads to the study of multipliers. Let n be a finite

cyclic plane and let N be the normalizer of a Singer group S (i.e. 5 is a cyclic

collineation group of n which acts sharply transitively on the points of n ) in

the full collineation group. Then N = S ■ Nx , where Nx is the stabilizer of

a point X of n in N. The group N/S = Nx is independent of X and S.

This is the multiplier group of n, which can be identified as Aut(S') n Aut(Il).

The importance of the multiplier group can be seen from Ott's result of 1975

[O], which states that a finite cyclic plane is Desarguesian or a Singer group is

normal in the full collineation group. In this paper we prove the following.

Theorem 1.1. If the order of a group of multipliers of a finite cyclic plane is

divisible by the odd part of the order of the automorphism group of a Singer

group, then the order of the plane is 2, 3, 4, or 8. In particular, the order of the

multiplier group equals the odd part of the order of the automorphism group of a

Singer group if and only if the order of the plane is 2, 3, or 8.
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A flag is an incident point-line pair. It is conjectured that every finite pro-

jective plane which admits a flag transitive collineation group must be Desar-

guesian. Evidence for this conjecture was obtained by W. Kantor who uses the

classification of finite simple groups and detailed knowledge of their maximal

subgroups of odd index to prove the following important result in 1987 [K].

Theorem 1.2 (Kantor). Let Yl be a projective plane of order n admitting a flag

transitive collineation group G. Then Yl is Desarguesian or G is a Frobenius

group of order (n  + n + l)(n + 1) and n  + n + 1 is a prime.

Using planar different sets and number theory, W. Feit gave an elegant proof

of the following result in 1988 [F].

Theorem 1.3 (Feit). Let Yl be a flat transitive projective plane of order n which

is not Desarguesian. Then p = n + n + 1 is a prime, « = 0 (mod 8), n is not

a power of 2 and d"+  = 1   (mod/?) for every divisor d of n .

We could obtain Theorem 1.3 from Theorem 1.1 as follows. If « is a power

of 2, then the multiplier group has order n + 1 , which equals the odd part of

the order n(n + 1 ) of the automorphism group of a Singer group. By Theorem

1.1, this implies n = 2, or 8 and the plane is Desarguesian. Hence n cannot

be a power of 2 when n is not Desarguesian. It is well known that if 2a\n ,

but 2a+x \ n for a = 1 , or 2, then n = 2a. (See, for example, [JV].) Finally,

the order of the multiplier group being n + 1 implies that d"+x = 1 (mod/?)

for every divisor d of n by Hall's multiplier theorem (Theorem 2.1 below).

2. Preliminary results

In this section, n is a finite cyclic plane of order n . Let 5" be a Singer

group of n, and let /V be the normalizer of S in the full collineation group

of n . For any collineation group H, let P(H) be the set of fixed points of H

and Fix(H) be the fixed-points-lines substructure of H. An integer t is called

a multiplier if the automorphism of S: s —► s' is also a collineation of n when

we identify the points of n with the elements of S. Our terminology in group

theory is taken from [G], that of projective planes is taken from [HP], and that

of difference sets is taken from [B]. For the convenience of readers, we record

the following known results.

Theorem 2.1 (Hall [HP]). Any divisor of n is a multiplier.

Theorem 2.2 (Gordon, Mills, and Welch [B]). If n = p for some nonnegative

integer k and prime p, then the multiplier group consists of all the powers of p

modulo n   + n + 1 .

Lemma 2.3 (Ott [O]). Suppose U is a subgroup of N such that \P(U)\ > 1 .

Then \P(U)\ = \CS(U)\. If \CS(U)\ + 1, then CS(U) is a Singer group of the
subplane Fix(U). (Here a triangle is also regarded as a subplane.)

For brevity, we write difference sets for planar difference sets. The order of

a difference set D is defined to be \D\ - 1 .
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Lemma 2.4. Let D be a difference set of order n of a cyclic group G = Gx x

■ ■ ■ x Gh , where Gi is the Sylow p¡-subgroup of G for i = 1, ... , h . Assume

M is a group of multipliers of G. If M fixes D and G2 x ■• ■ x Gh C CG(M),

then the following holds.

( 1 )  There exists a shift R = Dg of D such that R is fixed by M, and R

contains a generator of G.

(2)   \M\<n + l.

Proof. By the definition of a difference set, we see that D <t H, for any proper

subgroup H of G. Let G = G/<Î>(G), where O(G) is the Frattini subgroup of

G . Then G = Zn x ■ • • x Zn . As no proper subgroup can contain D, D will
"l "h

contain an element x — (xx, ... , xh), such that xx / 1 . Let d € D such that

d = x . Multiplying d by a suitable element g € G2x ■ ■ Gh , we may assume

dg = (y,,... , yh) with v, f 1 ¿ ■ ■ ■ t¿ yh. Thus G = (dg). Since g € CG(M)
and M fixes D, we obtain that M fixes Dg. This proves (1).

Next we prove (2). By (1) we may assume that there is a difference set R of

G invariant under M and containing a generator d of G. If da = d , for

a, ß €M, then a = ß as (d) = G. Hence \M\ = \{da : a € M}\ < \R\ = n + 1

as required.

Corollary 2.5. Let D be a difference set of order n of a cyclic group G. Suppose

\G\ = 3' • ps, i € {0, 1}, and p is a prime different from 3. Assume M is a

group of multipliers of G, and \M\ is odd. If M fixes D, then the following

holds.

( 1 )  There is a shift Dg of D such that Dg contains a generator of G, and

Dg is fixed by M.

(2)   \M\<n + l.

Proof. Since \M\ is odd, our condition on |t7| forces that CG(M) contains

the Sylow 3-subgroup of G. This establishes (1) and (2) by applying Lemma

2.4.

We remark that D = {3, 6, 12, 7, 14} is a difference set of Z21 (written

additively). The multiplier group M generated by the multiplier: x —» 2x has

order 6 and D is the only shift of D fixing by M. Both conclusions ( 1 ) and

(2) of Corollary 2.5 fail in this example.

3. Proof of Theorem 1.1

We continue to use the notations in the first paragraph of the last section.

Further, for any positive integer z we use z2> to denote the odd part of z (i.e.

z = 2 (z2l) and z2, is odd). If the order n of the plane is 2, 3, 4, or 8, then

the plane is Desarguesian and the full multiplier group has order 3, 3, 6, or 9,

respectively, which is divisible by the odd part of the order of the automorphism

group of a Singer group, respectively.
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2
Let v = n + n + 1 . Let M be a group of multipliers of n which satisfies

the conditions of Theorem 1.1. There is a difference set D invariant under M.

(See, for example, [HP].) We divide the rest of the proof of Theorem 1.1 into

the following three steps.

Lemma 3.1.

(1) If \M\ is even, then n = 4.

(2) If v = p or 3p for some prime p / 3 and \Aut(S)\2i  divides \M\,

then n = 2, 3, 4, or 8 .

Proof. Suppose \M\ is even. Then M has only one involution a, which is a

Baer involution [Ho]. As |Aut(.S)|2< divides \M\, M induces on the Baer sub-

plane Cs(a) a group of multipliers whose order is divisible by | Aut(Cs(a))\2, .

By induction, v^t"e {2, 3, 4, 8}. Hence n € {4, 9, 16, 64}. Only n = 4 sur-

vives the condition that \(¡>(v)\2, divides |M\, where q)(v) denotes the Euler

function. This proves (1).

In proving (2), we may assume, by (1), that \M\ is odd. Thus, without loss

of generality, we may assume \M\ = \Aut(S)\2> .

First we treat the case in which v is a prime. Hence | Aut(5")| = v - 1 =

n(n + 1) in this case. Further Cs(m) = 1 for any 1 ^ m € M. Thus a

nontrivial element in M fixes one point only. Since M fixes a line, this implies

that \M\ < n + 1 .

Suppose n is even. Since n + 1 is odd, we obtain \M\ > n + 1 . So \M\ =

n + 1 . This forces n = 2 for some nonnegative integer k . By Theorem 2.2,

we obtain 3k = \M\ = 2 + 1 . Hence k = 1 , or 3, and so n = 2, or 8 as

required.

If n is odd, then \M\ > n . Since \M\ < n + 1 , this implies that « + 1=2

for some nonnegative integer k and \M\ — n . Since 3 divides \M\ by Theorem

2.1, 2 - 1 = n = \M\ = 0 (mod 3). Hence k is even. Let k = 2a. Then n =

22a-l = (2a + l)(2a-l). By Theorem 2.1, x -» tx for t € {1, 3, 2a + l, 2a - 1}

are multipliers for S (written additively at this moment). By Corollary 2.5,

there is a difference set R of S such that R is M invariant and R contains

a generator c of S. Thus {c, 3c, (2a + l)c, (2a - l)c) ç R. So 3c - c =

(2a + 1 )c - (2a - 1 )c. This contradicts the fact that every nontrivial element has

only one representation as a difference of two elements in the difference set R

unless ö=l. Therefore a = 1 and n = 3 as desired.

Next we treat the case in which v = 3p for some prime p different from

3. Thus Aut(S) = Z2 x Zp_x . By Corollary 2.5, \M\ < n + 1 . Now \M\ =

| Aut(S)|2/ = (p - 1)2,. This implies that for any nontrivial element m e M,

Cs(m) is the Sylow 3-subgroup of S as v = 3p . Lemma 2.3 yields that for

any nontrivial element m € M, P(m) is a set of 3 noncollinear points, which

is independent of m as M is cyclic. The action of M on the points of a

line incident with two of the fixed points provides that «-1=0 (mod \M\).

Hence  « = 1    (mod 3)  as 3 divides  \M\.   From  3(p - 1) = (« - 1)(« + 2),
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we get p — 1 = ((« - l)/3)(« + 2) is an integral factorization of p — 1. If

« is odd, then « + 2 is odd and « + 1 > \M\ = (/? - 1)2, > « + 2. This

contradiction proves that n is even. We may assume that « ^ 2. Hence « = 0

(mod4). (See, for example, [JV].) Thus (« + 2)/2, (n-l)/3 are both odd. So

(« - l)(n + 2)/6 = |Af|. Since \M\ < n + 1, this implies that « = 4. But for

n = 4, \M\ = 6, which is not odd. This contradiction establishes the lemma.

Lemma 3.2. If v = 3' ■ p  , i € {0, 1} , k > 2 for some prime p , then \M\ ^

|Aut(S)|2,.

Proof. Since 9 never divides v , which is always odd, p > 3. Suppose \M\ =

| Aut(S)|2,. Since 3 divides \M\, \M\ > 3 ■ pk~x . By Corollary 2.5, \M\ <

n + 1. Thus n + 1 > 3-/"1 . So 3' ■ pk = v > (3pk~x - l)2 + 3/_1 . This

implies 3'p > 9p - 6, which is impossible as /' G {0, 1} and k > 2. This

contradiction proves the lemma.

We now turn to the final step of the proof of Theorem 1.1. Let S = Z¿ x Sx x

• • ■ x Sh be the factorization of S into its Sylow subgroups. Then i € {0, 1}.

By 3.1.(1) we may assume \M\ — | Aut(S)|2» . By 3.1(2) and 3.2, we may assume

in addition that h > 2. Suppose there is j € {1,..., h} such that |S | = p.

with b > 1 . Then there is a € Aut(S) of odd order. Hence a € M and

CS(M) contains all the Sylow subgroups of S except S,. By Lemma 2.3,

Fix(a) = r is a subplane, which is not a triangle as h > 2. This subplane,

which can be identified as Cs(a), is M invariant, and M induces a subgroup

of the multiplier group on it. Since \M\ = | Aut(5)|2/, the order of the group

induced by M on Y equals the odd part of the order of the automorphism

group of a Singer group of Y. By induction Y has order 2, 3, or 8. This

means |C5(a)| = 7, 13 , or 73. In other words, i — 0 and 5 = S, x T, where

\T\ — 7, 13, or 73. Now Aut(T) has an element ß of odd order. Hence

ß G M . Applying the above argument for a to ß , we get \SA = 7 , 13, or 73.

This contradiction proves that each S, has prime order for j g {1,...,«}.

Since 3 divides \M\, 3 divides |Aut(5;)| for some t € {1, ... , h}. So

Aut(5() has an element y of order 3. Applying the above argument for a to

y , we get i = 0 and S - SfxT, where \T\ = 1, 13 , or 73 by induction. Using

the same argument for T in the last paragraph, we obtain |5,| G {7, 13, 73} .

Thus |5| = 7-13, 7-73, or 13-73. If \S\ = 7-13, then S is a Singer group of
the Desarguesian plane of order 9, and \M\ = 6 . This contradicts \M\ being

odd. If |5| = 7 • 73 or 13 • 73, then \S\ ¿ n + n + 1 . This completes the proof

of Theorem 1.1.
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