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THE NORMAL HOLONOMY GROUP

CARLOS OLMOS

(Communicated by Jonathan M. Rosenberg)

Abstract. We prove that the restricted normal holonomy group of a subman-

ifold of a space of constant curvature is compact and that the nontrivial part

of its representation on the normal space is the isotropy representation of a

semisimple Riemannian symmetric space.

1. Introduction

The restricted holonomy group of a Riemannian manifold is a compact Lie

group, and its representation on the tangent space is a product of irreducible

representations and a trivial one. This product is unique up to order (see,

e.g., [K-N, §5]). Each one of the nontrivial factors is either an orthogonal

representation of a connected compact Lie group which acts transitively on

the unit sphere or it is the isotropy representation of a simple Riemannian

symmetric space of rank > 2 (see [B, S]).

We prove that, surprisingly, all these properties are also true for the repre-

sentation on the normal space of the restricted normal holonomy group of any

submanifold of a space of constant curvature. Moreover, the nontrivial part of

this representation is the isotropy representation of a semisimple Riemannian

symmetric space.

In order to prove this fact we define a tensor

¿?X: C°°(N, (M)f -* C°°(N(M)),

which provides the same geometric information as the normal curvature tensor

F and has the algebraic properties of a Riemannian curvature tensor. The

methods used here are then a slight modification of those of Simons in [S].

2. Normal curvature

Let (M" , ( , )) be a Riemannian connected manifold and let i: Mn —► QN

be an isometric immersion, where Q    is of constant curvature.
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Let N(M) AU M be the normal bundle over M induced by i. For the sake

of simplicity the Riemannian metric on ß   , as well as the usual metric on the

fibers of N(M), will also be denoted by ( ,  ). By C°°(N(M)) we denote the

C°° sections from M into N(M).

Define the tensor

3?±: C°°(N(M))3 -» C°°(N(M))

by putting

7 = 1

p e M, ¿jj, ¿í2, <^3 g N(M)p ; where A is the shape operator, F is the curva-

ture operator of the normal connection V and {ex, ... , en) is an aribitrary

orthonormal basis of T M.

The above tensor was just defined in [O-S].

Given an Euclidean space V we will denote by sf(\) the vector space of

skew-symmetric endomorphisms of V, with the usual inner product ( , ), i.e.,

(A,B) = -traced oB).

Lemma 2.1. Assume the hypothesis and notation of this section.   Then, for all

¿¡x, A2, £3, A4 e C°°(N(M)), the following are verified:

(i) 3?±(ix,Z2) = -3?±(S2,Çx),

(ii) ATL(t:x, í2)í3 +3l^(A2, ^ + ^(¿j3, ZX)A2 = 0,

(iii) (AT^(?X, ç-2)ç-3, í4> = -(c¡3, ATL(?X, ?2)Q ,

(iv) <^-L(i, , A2)^,Q = (3?±(Ç3,QA] , Q = -i2([A(i , A^], [A^ , A(]).

Proof. The proof was given in [O-S], but we reproduce it completely. Let p e M

and let {ex, ... , en} be an orthonormal basis of T' M.

7 = 1

by the well-known formula, when the ambient space is of constant curvature,

n

7=1

= trace (/^ o[A^ , A^]o A()

= { tracep(A^ o [A(¡, A(] o A(¡ )

+ \ traeep((A^ o [A^ , A(] o A^ )')
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= \ tracep(^íi o A^ o [A^ , A(])

- \ tracep(A(¡ o [^   , \]° A^)

= \ tracep{A^ o A^ o [A^, A^] - A^ o A(¡ o [A(j, A(j]}

= \ trace, ([y^, A^] o [A^ , A(])

which proves (i), (iii), and (iv).

As we have seen above,

(«<(£,, «iKa, Q = trace^^ o [A(}, A^] o A(¡ )

= traceM, o A* o A* o A, )
P 42 Í3 M »1

- trace„(A o A, o A* o A*)7>v   C2       i4       43       S,J

= traceíA o A, o A, o A.)

-tracen(A o,L o/í, o A.).
P       43 il »2 ç4

Summing over all cyclic permutations of {1, 2, 3} we clearly obtain (ii).    D

Observe that, from (iv), we have that Rp = 0 •«■ 3îp  = 0.

We have much more than this. The following result tells us that £ÏÏ1~ carries

the same geometrical information as Rx .

Proposition 2.2. Assume the notation and assumptions of this section.   Then,

for all p e M, the linear space of skew-symmetric endomorphisms of N(M)

spanned by the set {Rp (X, Y): X, Ye TpM} coincides with that spanned by

the set {3?¿-(A,r¡):A,neN(M)p}.

In order to prove the last fact we shall next define AT    in an equivalent but

convenient way.

First of all observe that, by (i) of Lemma 2.1, we can see, for each p e M,

AT^:K2(N(M)p)^sf(N(M)p)

by putting

Similarly we can see

Consider now

<«A1)=<K-1).

RpL:A2(TpM)^sf(N(M)p).

A2(N(M)p) -Í2U sf(TpM) -^ A2(TpM) -A^sf(N(M)p),

where L (£, An) — [A,, A ] and h   is the isomorphism given by

(h~\x /\y)(u), v) = (x, u)-(y, v) - (y, u) ■ (x, v).
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By a straightforward calculation we have

Lemma 2.3. 3?^ = -R^ ohoLn.p p      p      p

Put on A (T M) the inner product defined by

((i>,tu)) = (h~\v), h~\w)) = -trace(h~\v)oh~\w)).

Then we have

Lemma 2.4.  kerF, = (hp o Lp(A2(N(M)p)))± .

Proof. Let   {ex, ... ,en)   be an orthonormal basis of  T M, and let   u  —

£*</ aki -ekAei = a2(TpM) . If f, n e N(M)p are arbitrary,

(KMs>*> = (Eaki-RUek>eiK>v)
\k<i i

= ^akr{[A(,An)(ek),el)
k<l

but

((u, hp o Lp{t A n))) = - trace(h~\u) ° Lp(c¡ A 17))

= EvV'wK) >et) ■ H - A^es) >e,)
s ,1

= 2-J^akl([Ai,An](ek),eJ),
k<l

then

(Rp;(u)t,r1) = 2-A(u,hpoLp(ÇAr1))),

which clearly implies the Lemma.   D

Proof of the proposition. It is immediate from Lemma 2.4.   D

3. The main result

Theorem 3.1. Let Mn be an immersed submanifold of a Riemannian manifold

Q of constant curvature. Let p e M and let <P* be the restricted holonomy

group of the normal connection at p . Then Q>* is compact, there exists a unique

(up to order) orthogonal decomposition of the normal space at p, N(M) =

V0 © • • • © \k , into <P*-invariant subspaces, and there exist <P0, ... , <¡>k normal

Lie subgroups of <ï>* such that:

(i) O* = <I>0 x      x <p¿  (direct product).

(ii) <P( acts trivially on V, if i / j.

(iii) <P0 = {1}  and, if i > I,  <P(  acts irreducibly on V;  as the isotropy

representation of a simple Riemannian symmetric space.

We keep the notation and assumptions of §2.
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Let p e M be fixed, and let y: [0, 1] —» M be a piecewise differentiable

curve with y(l)=p. Denote by y*(3?±) the tensor of type (1,3) in N(M)p

defined by

y*(3eL)(v,w)z = P7(3l^(P;\v),P;\w))P;\z)),

where y(0) = q and F   denotes the parallel displacement along y with the

normal connection.

Denote by AT the linear subspace of the tensors of type (1,3) of N(M)  ,

generated by all the y*(3?  ), where y runs over all piecewise differentiable

curves ending at p .

From the theorem of Ambrose-Singer and Proposition 2.2 we have that the

Lie algebra ß of the restricted normal holonomy group <ï>* at p coincides with

the linear span of the set {R(u, v): R e AT,  u, v e N(M)p) .

From Lemma 2.1, we have that if Re AT, then

(i) R(u,v) = -R(v,u),

(ii) R(u, v)w + R(v, w)u + R(w, u)v = 0,

(iii)  (R(u, v)w , z) = -(w , R(u, v)z),

(iv)  (R(u, v)w, z) = (R(w , z)u, v).

Decompose orthogonally

N(M)p = V0®---®Vk

into <P* -invariant subspaces such that <P* acts trivially in V0 and, if i > 1,

O* acts irreducibly in V;   (dimV; > 2).

If w G N(M)p , denote by «; the projection of u into V(.

Lemma 3.2. Let x, y e N(M)   and let Re AT. Then

(i) F(x,.,j;.) = 0 ifiïj;

(ii) R(x,y) = 'Z!í=0R(xi,y¡);
(iii) R(xi,yi)\J = {0} ifiïj;
(iv) R(xi,yi)\ic\r

Proof. It is the same of that given in [S, pp. 217, 218], but as it is very easy we

write it down.

If i ^ j and u, v e N(M)   then

(R(x,,yJ)u,v) = (R(u,v)xi,yJ)=0

because R(u, v) e ß and ß leaves V, invariant. This proves (i) and therefore

(ii).
Let Vj e V,, then

F(x,, y,)Vj = -R(yt, vj)xi - R(Vj, xi)yi = 0

by part (i), which proves (iii).

Part (iv) is immediate.   O

Let ßi be the vector subspace of ß generated by all the R(xt, yt), Re AT

and x(, yi e V(. From the above lemma we easily derive (see [S, p. 218]).
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Lemma 3.3.

(i) ßQ = {0} and each ßi is an ideal of ß, for i -0, ... ,k;

(ii) ß=ßx®---®ßk, with [ßt, ßA\ = {0} if i± j;
(iii) f.\. = Y.for i = 0,...,k;

(iv) fiYj = {0} if i*j;
(v) ß. acts irreducibly in V/, for i = 1, ... , k .

Proof of Theroem 3.1. We keep the notation of this section. For i = 0, ... , k ,

let <I>i be the connected Lie subgroup of <P* (which is also connected) with

Lie algebra ßi. Lemma 3.3 implies that we have the direct product <P* =

<P0 x • • ■ x <Pfc , that 0( acts trivially on V if /' / j and that «P, acts irreducibly

on V(. if i > 1. The uniqueness part of the theorem is now clear.

Now, a connected Lie subgroup of orthogonal transformations of a vector

space which acts irreducibly on it must be compact (see [K-N, appendix 5]).

Then each fl>. is compact, and therefore <P* is compact.

Now, for í > 1, choose F; G AT such that F( is not identically zero in V(..

Each [V(., F(, <J>;] is an irreducible holonomy system, in the notation of [S].

Using [S, Theorem 5], we finish the proof, since, by Lemma 2.1(iv), R. must

have negative scalar curvature.   □

In a future paper we will use the above results to establish the relation between

isoparametric submanifolds and the sense of Terng and those in the sense of

Striibing.
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