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Abstract. We consider the reaction-diffusion equations modeling two-step re-

actions with Arrhenius kinetics on bounded spatial domains or over all of R .

After noting the existence, uniqueness, and nonnegativity of global strong so-

lutions with virtually arbitrary nonnegative initial data, we give conditions on

the initial temperature that guarantee decay of the concentrations to zero and a

supremum norm bound on the temperature. In our first such result we assume

that the initial temperature T0 is uniformly bounded above the two ignition

temperatures. Specializing to the case of bounded spatial domains, we replace

this condition by the more general requirement that the average of T0 over

the domain is above both ignition temperatures. Finally, we note a bounded-

ness result with equal diffusion coefficients that holds for arbitrary choices of

the other parameters. Combining this assumption with the hypotheses, noted

above, about the initial temperature, we obtain steady-state convergence results

for the temperature as well as the concentrations.

1. Introduction

The following system of reaction-diffusion equations arises as a model of

laminar flames with complex chemistry corresponding to the two-step reaction

A^B^C:

(1-la) T, = d0AT + QxYxfx(T) + Q2Y2fi2(T)

(1.1b) YXl = dxAYx-Yxfx(T)

(1.1c) Y2l = d2AY2 + Yxfx(T) - Y2f2(T).

Here T is the dimensionless temperature, Yx is the concentration of A , and Y2

the concentration of B. T, Yx , and Y2 depend on x and t where (x, t) G

ílxR+ with f2 = K" or a bounded domain in R" with smooth boundary.

Both dl and Q are positive constants, and the functions f- take the form of

Arrhenius rate laws; there exist positive constants B   and E. and nonnegative
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constants T¡ such that for  ;' = 1, 2

( 0, T < T,

JjK {Bjexpi-Ej/iT-Tj)),  T>Ty

In (1.2), Tj represents ignition temperature. For the physical background be-

hind equations (1.1) and (1.2), see, e.g., [4, 12].

The one-step reaction A —> B is modeled by (1.1a) and (1.1b) with Y2 = 0.

The existence of traveling-wave solutions with Q = R was established in [3]

for T, > 0 and in [9] for Tx = 0. These traveling-wave solutions have been

shown to be stable if the Lewis number L = dx/d0 is close to 1, while they

are unstable if L is far from 1 and the activation energy Ex is large. These

results have been shown by formal asymptotics in [5] and [7]; a rigorous proof

of the instability result has recently been obtained ([11]). Qualitative behavior

for the general Cauchy problem for the one-step reaction was developed in [ 1 ]

for Q = R and in [2] for the case in which Q, is a bounded domain in R"

with various boundary conditions prescribed. In particular, examples of flame

propagation versus flame quenching are discussed in [1] and [2].

About the full two-step reaction less is known. Two flame fronts may propa-

gate, each corresponding to a different stage in the reaction, and each proceeding

with a different velocity. The existence of traveling-wave solutions was estab-

lished in [10] in the case that the second front is faster than the first. Stability

results do not as yet exist, but one expects, from the one-step example, that

instability of traveling waves occurs for a wide choice of parameters.

As in the one-step case, it is thus of interest to study the general Cauchy

problem for (1.1) when Q = R, and it is of independent interest to study

the Cauchy/boundary-value problem for ( 1.1 ) on a bounded domain Q in R"

with smooth boundary. We consider both of these Cauchy problems in this

paper for arbitrary nonnegative, bounded, and uniformly continuous initial data

T0{x) = T(x, 0), Yx0(x) = Yx(x, 0), Y20(x) - Y2(x, 0), where in the bounded-

domain case we assume zero Neumann boundary conditions for T ,YX, and Y2.

As we will see in the last part of this section, it is straightforward to establish

the existence, uniqueness, and regularity of global strong solutions to (1.1) for

each choice of initial data described above (Theorem 1.1).

In our first main result (Theorem 2.1) we show that if there exists a constant

a such that TQ(x) > a > T- for all x in Q and j = 1,2, then T remains

bounded and both F, and Y2 decay exponentially to zero.

In §3 we restrict to the bounded-domain case while relaxing the condition on

TQ . Requiring only that the average of TQ over Q. [see (3.1)] be greater than

or equal to a (with a > TA, we show that eventually Yx and Y2 decay to zero

at exponential rates and that T remains bounded. The result in §2 will be a

key component of that proof.

Both of these theorems can be recast in an abstract setting that allows for

more general f, than those specified by (1.2). It will be clear from the proofs

that it suffices for the f. to be nonnegative, bounded, smooth, and monotone
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increasing and for there to exist nonnegative constants T, such that f(T)>0

for T > Tj-, see, e.g., (2.1) and (2.2) below.

Finally, in §4 we show that if d0 = dx — d2, then T, T, , and Y2 remain

bounded regardless of the values of the other parameters. Suppose in addition

we assume the conditions on T0 imposed in Theorem 2.1 in the case f2 = R,

or the conditions on T0 imposed in Theorem 3.1 in the bounded-domain case;

for Q, = R we also assume that T0, Yxo, and 720 have limits at ±co. We

already have under these conditions that 7, and Y2 converge uniformly to the

zero steady state; we show in addition that T converges to a constant steady

state specified by T0, Yxo, and Y20 . The convergence for T is uniform in the

bounded domain case and uniform on compact sets in the case Q = R.

We close this section with a discussion of the aforementioned existence,

uniqueness, nonnegativity, and regularity of general solutions to (1.1). Global

existence, uniqueness, and regularity in t and x for t positive follow immedi-

ately from the fact that the nonlinear terms in ( 1.1 ) are smooth and in particular

globally Lipschitz continuous as functions of T and Y. Nonnegativity of so-

lutions follows by applying Theorem 14.3 of [8]. One can also deduce nonnega-

tivity directly from ( 1.1 ) by first observing that the evolution of Yx is governed

by a positivity-preserving fundamental solution. One can then write an integral

equation for Y2 in terms of a similar positivity-preserving fundamental solution

and the (nonnegative) forcing function Yxfx(T). Nonnegativity for T then fol-

lows directly from its standard integral equation in terms of exp(tdQA). In any

case we thus have the following result; here CBU(il) indicates the uniformly

continuous and bounded functions on Í2 :

Theorem 1.1. Let Q. — R" or a bounded domain in R" with smooth boundary.

In the latter case, let A be equipped with zero Neumann boundary conditions.

Then for arbitrary nonnegative initial data T0, Yxo, Y2Q G CBU(Sl) there exist

unique global strong solutions T, Yx, and Y2 of (I A) such that T, T,, Y2G

C([0,+oo);   CBU(n))DCJ((0,+oo)Ck(n)) for any j,k>\.

2.  A DECAY AND BOUNDEDNESS RESULT

Theorem 2.1. Let T, Yx , and Y2 be as in Theorem 1.1. Assume in addition

that there exists a constant a such that T0(x) > a > T, for all x in Q and

j =1,2. Then Yx and Y2 decay exponentially to zero and T remains bounded.

Proof. We have from (1.1a), standard comparison principles (see, e.g., [6]), and

the nonnegativity of Q,, Y,, and fij(T) that for all x in Q and t > 0

(2.1) T(x, t) > (exp(td0A)T0)(x) > a.

Set ßx = fix(a) and ß2 = f7(a). Then, for all x in Q and t > 0,

(2.2) fj(T](x,t))>ßj,  j=l,2

by the monotonicity of f. (see (1.2)). Standard semigroup theory (or a com-
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parison principle) then implies that

(2-3) IIWIL Police«"'''
for all t > 0.

Now let  U2(t, s)  he the fundamental solution generated by the operator

d2A- V2(t), where V2(t) denotes multiplication by f2(T(t)). We have that

(2.4) Y2(t) = U2(t,0)Y20+ f'u2(t,s)Yx(s)fix(T(s))ds,
Jo

and again from (2.2) that

(2.5) Wltiit^n^Ke-U'-*,

where the left-hand side of (2.5) denotes the operator norm of U2(t, s) taken

over CBU(Sl). Combining (2.3), (2.4), and (2.5) with (1.2), we then have that

IIWIloo * Hy2olloo^2'+ ['e-K'-'^isWiTisM^ds
(2.6)

áPraolL''* + flriolL*,/ ^('_V^.
Jo10

Select y > 0 such that ß2 > y and ßx> y, then

(2j) e-ßi«-s) _ e-(ßi-r)(t-s)e-y{t-s) < e~?(t-s)

so from (2.6) we have that

s->< , h v ii   d ~-yt /' „-(A,-i')i

(2.8)
WB.<l|lraolL«"W + llrlollao^«"',/>"

Jo
<K2e yt,

where

(2-9) K2^\\Y20\\oo + \\Yxo\\ooBx(I/(ßx-y).

Thus   T,(i)  and   T2(0  decay exponentially to zero in  t.   Setting  WQ(t) =

exp(td0A) we know that

(2.10) T(t)=W0(t)T0+ [!rV0(t-s)[QxYx(s)fx(T(s)) + Q2Y2(s)fi2(T(s))]ds.
Jo

Applying supremum norms to both sides of (2.10) and using (1.2), (2.3), (2.8),

and (2.9), we then have that

(2.11) ||7'(Oll00<l|7o||00 + ß1||y10||00B1(l/j?1) + e2A:2fi2(l/y)

for all t > 0, thus completing the proof of the theorem.

3. Further decay and boundedness results on bounded domains

We define the average TAV of TQ over Q as follows:

(3.1) TAV = l/i\a\)[ T0ix)dx
Jn
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where |Q| is the volume of Q. We are assuming that A is equipped with zero

Neumann boundary conditions; i.e., the domain of A is the closure in C(Í2)

of the C   functions u on Q such that

(3.2) ^ = o on an
ou

where v is the outward normal on the boundary dQ. Let WQ(t) - exp(tdQA).

Then it follows that

(3.3) lim (W0(t)T0)(x) = TAV

uniformly on Q for TQ as in Theorem 1.1. That (3.3) holds for C1 functions

ro can be seen by expanding W0(t)T0 in terms of the eigenfunctions of A:

the first eigenfunction is the constant 1/|Q|, with eigenvalue 0; thus, the first

term in the expansion is TAV. The rest of the superposition is bounded by a

constant times exp(-X2t) where X2 is the second (positive) eigenvalue of -A.

The result for general TQ follows, using the regularity of T(t) for t > 0 and

the mass conservation property of the heat equation holding for A as above.

The next result then follows easily from these observations and Theorem 2.1:

Theorem 3.1. Under the conditions of Theorem 1.1 in the case that £1 is bound-

ed, assume in addition that TAV > T¡, j = 1, 2. Then T remains bounded

and there exist positive constants tQ, ßx, ß2, and K2 such that for all t > t0

(34) IIWIIoo<ll>Wlc^~/?|('~'0),
||T2(/)||0O<V-/?2('-'°).

Proof. From the remarks concerning (3.3) we have that, given a with TAV >

a> T., j = 1,2, that there exists a t0 > 0 such that t > t0 implies for all x

in Q that T(x, t) > a. We then obtain (3.4) by regarding T(tQ), Yx (t0), Y2(t0)

as initial data for (1.1) and noting that ||y"j (ij)!^ < H^ioltoo ^y ^e maximum

principle. The boundedness of T then basically follows as in Theorem 2.1.

4.  BOUNDEDNESS AND STEADY-STATE CONVERGENCE

WITH EQUAL DIFFUSION COEFFICIENTS

We assume in this section that dt■ = 1 for i = 0, 1, 2. The next result

follows easily, using only a slight modification of a simple argument used in

[10] in the case of equal diffusion coefficients; see also §7 of [1] and §3 of [2]

for further applications in the one-step case of this argument.

Theorem4.1. Set dt = 1 for i = 0, 1,2. Then T,YX, and Y2 remain bounded

for arbitrary choices of the other parameters.

Proof. Let W = T + (Qx + Q2)YX +Q2Y2. Then, by adding (l.la)-(l.lc), we
obtain that Wt= AW . By nonnegativity of T ,YX,Y2 we then have that

(4.1)        0 < T + (Q, + Q2)YX + Q2Y2 <T0 + (Q, + Q2)YX0 + ß2F20,

and the theorem is established.
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Corollary 4.1. Suppose Q — R and that T0, Yxo, and Y20 have limits at ±oc.

Then under the conditions of Theorem 2.1 and Theorem 4.1 we have that Yx(t)

and Y2(t) converge uniformly to zero and that T(t) converges on compact spatial

sets to the average of the values of T0+„(QX + Q2)YX0 + Q2Y20 at +00 and -00.

Proof. Let W be as in the proof of Theorem 4.1. Then  W(t) converges on

compact spatial sets to the constant indicated by a well-known property of e

(see, e.g., Lemma 5.2 of [1]). Theresultfor T(f) then follows by the exponential

decay to zero of Yx(t) and Y2(t).

Corollary 4.2. Suppose Q is a bounded domain in R" with smooth boundary.

Then, under the conditions of Theorem 3.1 and Theorem 4.1, Yx(t) and Y2(t)

converge uniformly to zero and T(t) converges uniformly to the average of TQ +

(Ql+Q2)YX0 + Q2Y20 over il.

Proof. We use the same proof as in Corollary 4.1 except that W(t) converges

to the indicated constant by the remarks preceding the proof of Theorem 3.1.

5. Remarks

Note that the condition TAY > T¡, j = 1, 2 of §3 is quite general and

supercedes the conditions imposed in §2 when Í2 is bounded. It is a reasonable

condition to impose, since in practice the 7'. are small numbers while the burn

temperature is typically very large.

The main applications of Theorem 2.1 are thus to serve as a key ingredient

in the proof of Theorem 3.1 and to handle the case Q. = R" (e.g., n = 1 ). The

assumption TQ(x) > a > T. for all x in R is quite restrictive; it requires, as

for example in the case of a premixed reactive gas, that the gas be already hot

when it enters the chamber. This occurs, for example, in an engine equipped

with a precombustion chamber, so the condition on TQ imposed in Theorem

2.1 is not without physical application.

One can imagine trying to generalize Theorem 2.1 for Í2 = R along the

lines of Theorem 6.1 in [1], where it is shown in the one-step case that suitable

decay of the concentration to zero, roughly mimicking flame-front propagation,

is established whenever the average of T0 at +00 and -00 is above ignition

temperature. Note the analogy with the condition on TAV imposed here in §3;

again it is a reasonable condition to impose, and in particular allows ignition to

occur at one end only for a wide class of initial data.

Extending this result to the two-step case is complicated by the presence of

the nonnegative term Yxfx(T) in (1.1c). Detailed estimates showing that this

term decays fast enough to be integrable in / may be needed, along with an ad-

dressing of the relationships among Tx, T2, Qx , and Q2. Such considerations

are beyond the scope of the analysis in [1] and the present work.

The main ingredients of the proof of Theorem 3.1 appeared first in appli-

cation to the one-step case on bounded domains in §3 of [2]. Note once again

that Theorem 2.1 allows the application of Theorem 3.1 to the two-step case.
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