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ON A LIPSCHITZ INVARIANT OF NORMED SPACES

YOAV BENYAMINI

(Communicated by William J. Davis)

Abstract. C Bessaga introduced an invariant n(X) for cr-compact normed

linear spaces. He showed that n(X) = n(Y) whenever X and Y are Lipschitz

homeomorphic. In this note we construct two cr-compact normed spaces with

n(X) = n(Y) which are not Lipschitz homeomorphic. Moreover, there are no

compact convex sets K and L generating X and Y , respectively, which are

Lipschitz homeomorphic. This answers two problems posed by Bessaga.

Let K he a compact metric space. Denote by en(K) the infimum of those

s > 0 so that K contains an e-net of size 2", and let e(K) be the set of

all positive sequences (an) so that \iman/en(K) = 0. If X is a o-comapct

metric space, put n(X) = f)(Une(An)), where the intersection is taken over all

countable compact covers (An) of X .

These definitions were introduced by C. Bessaga in [Bes], and used by him

to construct a normed linear space X which is not Lipschitz homeomorphic to

its closed subspaces of codimension 1. He showed that if X is a closed subset

of Y, or is a Lipschitz image of Y, then n(X) G n(Y). In particular it follows

that n(X) = n(Y) when X and Y are Lipschitz homeomorphic.

At the end of his article, Bessaga asks if one can construct two non-Lipschitz-

homeomorphic spaces for which n(X) = n(Y) (Problem A), and whether

n(X) = n(Y) implies that there are Lipschitz-homeomorphic compact and con-

vex sets K and L generating X and Y, respectively (i.e., X = UnK and

Y = linL) (Problem B).

In this short article we answer these problems by constructing cx-comapct

normed linear spaces with n(X) — n(Y), so that any compact convex set that

generates X cannot be Lipschitz homeomorphic to a subset of Y. Both the

construction and the proofs are simple, and we use known techniques for re-

ducing problems of Lipschitz classification to the linear case by differentiation.

We shall use standard notation and terminology (see for example [LT] and

the survey article [Ben].

Let  {/2;: -co < i < oo}  and  {c7(: -oo < i < oo}  be two doubly infinite
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sequences so that 3 < p¡ < q¡ < p¡+, < 4 for all i, and let

■VH*<yl

Define similarly Zq = (£,• @tq)2, and put K = {x^: \xu\ < 2 |/| J}.

K is a compact and convex set when regarded as a subset of either Zp or

Z , and we let X   he its linear span, X = UnK, with the Z   norm, and X

is the same linear space with the Z   norm.

X   and X    are cr-compact, and  n(X) = n(Xq), because each of these

spaces is a Lipschitz image of the other. Indeed, as pt < qi for all i, the formal

identity is a norm -1 linear operator from X   into X   which is obviously onto.

Conversely, the map T(xi}) = (x;_,   ) is a norm -1 operator from X   into X

(because q¡ < p¡+x for all i ). It is also an onto map because K/2 C T(K) c 2K.

Proposition. Let L be a compact convex subset of X which generates X .

Then L cannot be Lipschitz homeomorphic to a subset of Zq.

To prove the Proposition, we first need a few preliminaries. The first Lemma

was used in [Bes, proof of Proposition 2]. We give the proof for the sake of

completeness.

Lemma 1. Let L be a compact convex subset of the normed space X such that

X = UnL, and let K be a compact convex subset of X. Then there is an «0

such that K G nQL.

Proof. By the Baire Category Theorem, there are n,, x0 G K, and e > 0, so

that K n B(xQ, s) G nxL. By the compactness and convexity of K, there is

a ô > 0 such that (1 - â)x0 + ôk g K C\B(x0, e) ç nxL for all k G K ; i.e.,

K G ô~\nxL + (ô- l)x0) ç n0L, provided n0 is large enough, by the convexity

of L.

Let AT be a subset of a Banach space X, and let / be a function from

X into another Banach space Y. Fix a point k in K, and let Xk he the

subspace of X of all points x such that k + Xx G K for small enough |A|.

The differential of / at the point k, is a linear operator Dfk:Xk -> Y such

that Dfk(x) = lim^0(/(fc + Xx) - fi(k))/X for all x G Xk .
Note that if / satisfies a Lipschitz condition with constant C, then Dfk

(when it exists) is a bounded linear operator of norm at most C. Similarly, if

/ is a Lipschitz embedding, then Dfk is an into linear isomorphism. Finally,

if Xk is dense in X and / is a Lipschitz embedding, then Dfk extends by

continuity to a linear isomorphism of all of X into Y .

Our next Lemma is a summary of the results of [M, §4] in the context of

Banach spaces, using a somewhat different terminology.

Lemma 2. Let f be a Lipschitz function from a compact convex subset K of

a normed space X into a Banach space Y with the Radon-Nikodym Property.
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Assume K is affinely homeomorphic to the Hilbert cube Q, and let p be the

image on K of the usual measure on Q. Then f has a differential p-a.e. on

K.

The last lemma follows by a routine gliding-hump argument form the fact

that lr is not isomorphic to a subspace of ls when r ^ s (see [LT]).

Lemma 3.  Z   is not linearly isomorphic to a subspace of Z .

Proof of proposition. By Lemma 1, L contains a multiple of K . It thus suffices

to prove that K , considered as a subset of Z , cannot be Lipschitz-embedded

into Z . But K is affinely homeomorphic to the Hilbert cube and, for almost

all points k in K, Xk is dense in Z . Also Zq, being reflexive, has the

Radon-Nikodym Property. It thus follows from Lemma 2 and the remarks

preceding it that if K were Lipschitz homeomorphic to a subset of Z , then

Z would be linearly isomorphic to a subspace of Z—but this contradicts

Lemma 3!
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