LINKS NOT CONCORDANT TO BOUNDARY LINKS

CHARLES LIVINGSTON

(Communicated by Frederick R. Cohen)

ABSTRACT. Casson-Gordon invariants are used to prove that certain links in S^3 are not concordant to boundary links. These examples were first described by Cochran and Orr.

Tim Cochran and Kent Orr recently announced the construction of 2 component links in S^3 with the property that, although all the Milnor $\overline{\mu}$ -invariants vanish, the links are not concordant to boundary links [CO]. They also provide examples of higher dimensional links of two components which are not concordant to boundary links. Their 3-dimensional examples include the links $L_m(m>0)$ illustrated in Figure 1 (see p. 1131). Both bands on the Seifert surface for K_1 are untwisted; that is, the Seifert form vanishes on the homology classes represented by x and y. They let K be the trefoil. The knot K_1 (with m=1) was used in my paper with Gilmer [GL1] as an example of a slice knot that is algebraically doubly null concordant, but not doubly null concordant. The results of [CO] and [GL1] are related. We will show here that the result that L_m is not concordant to a boundary link follows readily from the results of Gilmer [G] on which the work in [GL1] was based. Gilmer's work was based on earlier work on knot concordance by Levine [L] and Casson and Gordon [CG1, CG2].

Danny Ruberman [R1] generalized the work of [GL1] to higher dimensions. (See also [R2] and [Sm] for corrections to [R1].) His observation that the Casson-Gordon invariants apply to higher dimensional slice problems is relevant here. However, a more careful analysis of the Casson-Gordon invariants is needed to prove that the high dimensional examples of [CO] are not concordant to boundary links. That analysis will be presented in a separate paper being written with Pat Gilmer [GL2].

Tim Cochran has informed me that he is also investigating the relationship between the work announced in [CO] and the Casson-Gordon invariant.

The rest of this note is devoted to the proof that L_m is not concordant to a boundary link.

Received by the editors August 30, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 57M25.

Key words and phrases. Link concordance, boundary links, Casson-Gordon invariant.

Pat Gilmer proved that if a slice knot K in S^3 bounds a genus 1 Seifert surface F, then there is a simple closed curve J on F representing a primitive element in $H_1(F)$ and for which Tristram p-signatures, $\sigma_{(s/p)}(J)$, vanish for all 0 < s < p, where p is any prime dividing the order of the first homology of the 2-fold cyclic cover of S^3 branched over K. Gilmer produced J as follows. Suppose that K bounds a disk D in B^4 . The surface $F \cup D$ bounds a 3-manifold R in B^4 . Let i denote the inclusion of F into R, and let H denote $i_{\star}^{-1}(\text{Tor}(H_1(R)))$. Gilmer showed that H is a 1-dimensional summand of $H_1(F)$ and that if J represents a generator of H then it has the desired signature properties.

To proceed, consider the link $L = K_1 \cup K_2$. K_1 is clearly slice. (Perform ambient surgery on the unknotted curve y on the evident Seifert surface F_1 .) We will show that if L is concordant to a boundary link then K_1 bounds a disk D in B^4 with the property that $F_1 \cup D$ bounds a 3-manifold R for which the generator of the summand H described above is represented by x.

The construction of D and R is done in two steps. First, suppose that Lis concordant in $S^3 \times [0, 1]$ to the boundary link $L' = K'_1 \cup K'_2$ bounding disjoint surfaces F'_1 and F'_2 . Denote the two components of the concordance C_1 and C_2 . The following transversality argument shows that the closed surface $F_1 \cup F_1' \cup C_1$ bounds a 3-manifold R_1 in $S^3 \times [0, 1]$ with R_1 disjoint from C_2 . (This was stated without proof in [S].)

Let ν denote tubular neighborhood. There is a map p of $(S^3 \times \{0\})$ $\nu(K_1 \cup K_2)) \cup (S^3 \times \{1\} - \nu(K_1' \cup K_2')) \cup \partial(\nu(C_2)) \text{ to } S^1 \text{ such that } p \text{ is transverse}$ to 1, $p^{-1}(1) = F_1 \cup F_1'$ and $p^{-1}(-1)$ contains $\partial(\nu(C_2))$. Constructing R_1 via transversality depends on extending p to $S^3 \times [0, 1] - \nu(C_1 \cup C_2)$.

Homotopy classes of maps of a space X to S^1 correspond to elements of $H^1(X)$. The restriction map of

$$H^{1}(S^{3} \times [0, 1] - \nu(C_{1} \cup C_{2}))$$

to

$$H^1((S^3 \times \{0\} - \nu(K_1 \cup K_2)) \cup (S^3 \times \{1\} - \nu(K_1' \cup K_2')) \cup \partial(\nu(C_2)))$$

is a map of \mathbb{Z}^2 to \mathbb{Z}^3 with image consisting of those elements that agree on the meridians of K_1 and K'_1 . Our map p represents a class in the image, and hence p is the restriction of a map as desired.

Let D_1 be a slice disk for K_1' in B^4 , and let R_1' be a 3-manifold bounded by $F_1' \cup D_1$ in B^4 . Form the union of $S^3 \times [0, 1]$ with B^4 identifying $S^3 \times \{1\}$ with ∂B^4 . The union of C_1 with D_1 forms a slice disk D for K_1 . The union of R_1 and R_1' forms a 3-manifold R bounded by $F_1 \cup D$. Note that R is in the complement of the connected surface $E = C_2 \cup F_2'$ bounded by K_2 .

If an element z in $H_1(F_1)$ represents torsion in $H_1(R)$, it is also torsion in

 $H_1(B^4 - E)$. The element z can be written as z = ax + by. In $H_1(B^4 - E)$,

FIGURE 1

x represents zero and y an element of infinite order, in fact the generator. (Linking numbers of x and y with E in B^4 equal their linking numbers with K_2 in S^3 .) It follows that b is 0, and hence that H is generated by the class represented by x.

The curve x is of the same knot type as K. The order of the homology of the 2-fold cyclic branched cover of S^3 branched over K_1 is $(2m+1)^2$. Hence, as long as $\sigma_{(s/p)}(K) \neq 0$ for some prime divisor p of (2m+1) and 0 < s < p, L will not be concordant to a boundary link. The trefoil works for all m > 0.

REFERENCES

- [CO] T. Cochran and K. Orr, Not all links are concordant to boundary links, preprint.
- [CG1] A. Casson and C. McA. Gordon, Cobordism of classical knots, preprint, Orsay; reprinted in A la recherche de la topologie Perdue (A. Marin and L. Guillou, eds.), Progress in Math. vol. 62, Birkhauser, 1986.
- [CG2] ____, On slice knots in dimension three, Proc. Sympos. Pure Math. XXX (1978), Part two, 39-53.
- [G] P. Gilmer, Slice knots in S³, Quart. J. Math. Oxford 39 (1983), 305-322.
- [GL1] P. Gilmer and C. Livingston, On embedding 3-manifolds in 4-space, Topology 22 (1983), 241-252.
- [GL2] ____, The Casson-Gordon invariant and link concordance, preprint.
- [L] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
- [R1] D. Ruberman, Doubly slice knots and the Casson-Gordon invariants, Trans. Amer. Math. Soc. 279 (1983), 569-588.
- [R2] _____, Casson-Gordon invariants and high-dimensional knot theory, Trans. Amer. Math. Soc. 306 (1988), 579-596.
- [S] N. Sato, Cobordisms of semi-boundary links, Topology Appl. 18 (1984), 225-234.
- [Sm] L. Smolinsky, Casson-Gordon invariants of some 3-fold branched covers of knots, Topology Appl. 31 (1989), 243–252.