ON A SINGULAR NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM

A. C. LAZER AND P. J. MCKENNA
(Communicated by Barbara L. Keyfitz)

Abstract

We consider the singular boundary-value problem $\Delta u+p(x) u^{-y}=0$ in $\Omega, u \mid \partial \Omega=0$, where $\gamma>0$. Under the assumption $p(x)>0$ and certain smoothness assumptions, we show that there exists a solution which is smooth on Ω and continuous on $\bar{\Omega}$.

1. Introduction

In this paper we consider the singular boundary-value problem

$$
\left\{\begin{array}{l}
\Delta u(x)+p(x) u(x)^{-\gamma}=0 \quad x \in \Omega \tag{1}\\
u \mid \partial \Omega=0
\end{array}\right.
$$

where Ω is a sufficiently regular bounded domain in $\mathbf{R}^{N}, N \geq 1$, and p is a sufficiently regular function which is positive in $\bar{\Omega}$. In the case $N=1$, this problem arises in certain problems in fluid mechanics and pseudoplastic flow [6], [7]. The N-dimensional problem (1) has been studied in [1] for general regions and, in [2], under the assumption that Ω is the open unit ball in \mathbf{R}^{N} and $p(x)=q(|x|)$, where q is a continuous function which is defined continuous and nonnegative on $[0,1)$. In [1], it is shown that solutions exist if Ω is C^{3}, and estimates are given for the behavior of the solution as the boundary of Ω is approached. In particular, if $\gamma>1$, it is shown that solutions fail to be in $C^{1}(\bar{\Omega})$.

Actually, the authors in [1] prove more general results for the existence of solutions, but the above is the case where behavior near the boundary is studied. In [1], the results are divided into two sections; first, the existence of solutions is proved, by an upper-lower solution method, and later, in an extremely complicated way, using localization near the boundary, the boundary behavior is deduced.

[^0]In this note we show that if Ω has a regular boundary, p is regular on $\bar{\Omega}$, and γ is any positive number, we can give a unified simple proof that there is a unique solution of (1), positive on Ω, which is in $C^{2+\alpha}(\boldsymbol{\Omega}) \cap C(\bar{\Omega})$. We emphasize that there is no restriction on the shape of Ω. We also give a necessary and sufficient condition that this solution have a finite Dirichlet integral.

This unified proof is made possible by the choice of new upper and lower solutions.

In this sense, we show that equation (1) can have a classical solution but not a weak solution. Finally, we briefly discuss two cases not covered by the results of [1], namely, the case where Ω can have corners, such as a square, and the case where $p(x)$ is not assumed to be strictly positive on $\bar{\Omega}$.
Theorem 1. Let $\Omega \subset \mathbf{R}^{N}, N \geq 1$, be a bounded domain with smooth boundary $\partial \Omega$ (of class $C^{2+\alpha}, 0<\alpha<1$). If $p \in C^{\alpha}(\bar{\Omega}), p(x)>0$ for all $x \in \bar{\Omega}$ and $\gamma>0$, then there exists a unique function $u \in C^{2+\alpha}(\Omega) \cap C(\bar{\Omega})$ such that $u(x)>0$ for all $x \in \Omega$ and u is a solution of (1). If ϕ_{1} denotes an eigenfunction corresponding to the smallest eigenvalue λ_{1} of the problem $\Delta \phi+\lambda \phi=0, \phi \mid$ $\partial \Omega=0$ such that $\phi_{1}(x)>0$ on Ω and $\gamma>1$, then there exist positive constants b_{1} and b_{2} such that $b_{1} \phi_{1}(x)^{2 /(1+\gamma)} \leq u(x) \leq b_{2} \phi_{1}(x)^{2 /(1+\gamma)}$ on $\bar{\Omega}$.

The proof of this theorem is the main result of [1].
Theorem 2. The solution u of Theorem 1 is in $W^{1,2}$ if and only if $\gamma<3$. If $\gamma>1$, then u is not in $C^{1}(\bar{\Omega})$.

2. Proof of Theorem 1

As is well known,

$$
\nabla \phi_{1}(x) \neq 0, \quad \forall x \in \partial \Omega
$$

Assume first that $\gamma>1$. In this case, let $t=2 /(1+\gamma)$ and let $\Psi(x)=b \phi_{1}(x)^{t}$, where $b>0$ is a constant. We have that

$$
\Delta \Psi(x)+q(x, b) \Psi(x)^{-\gamma}=0, x \in \Omega
$$

where $q(x, b)=b^{1+\gamma}\left[t(1-t)\left|\nabla \phi_{1}(x)\right|^{2}+t \lambda_{1} \phi_{1}(x)^{2}\right]$. Since $0<t<1$, it follows from (2) that we can choose numbers b_{1} and b_{2} with $0<b_{1}<b_{2}$ such that

$$
\begin{equation*}
q\left(x, b_{1}\right)<p(x)<q\left(x, b_{2}\right), \quad \forall x \in \bar{\Omega} \tag{3}
\end{equation*}
$$

For $k=1,2$, let $u_{k}(x)=b_{k} \phi_{1}(x)^{t}$. Since for $x \in \Omega$

$$
\Delta u_{k}(x)+p(x) u_{k}(x)^{-\gamma}=\left[p(x)-q\left(x, b_{k}\right)\right] u_{k}^{-\gamma}(x)
$$

it follows from (3) that

$$
\Delta u_{1}(x)+p(x) u_{1}(x)^{-\gamma}>0
$$

and

$$
\Delta u_{2}(x)+p(x) u_{2}(x)^{-\gamma}<0
$$

for all $x \in \Omega$.
We claim that if u is continuous on $\bar{\Omega}$, smooth on Ω, and satisfies (1) and $u(x)>0$ on Ω, then

$$
u_{1}(x) \leq u(x) \leq u_{2}(x)
$$

for all $x \in \bar{\Omega}$. Indeed, if the first inequality did not hold, then there would exist an x_{0} in Ω such that $0<u\left(x_{0}\right)<u_{1}\left(x_{0}\right)$ and the minimum of the continuous functions $u-u_{1}$ on $\bar{\Omega}$ is assumed at x_{0}. But according to the above, this would imply that

$$
\Delta\left(u-u_{1}\right)\left(x_{0}\right)<p\left(x_{0}\right)\left[u_{1}\left(x_{0}\right)^{-\gamma}-u\left(x_{0}\right)^{-\gamma}\right]<0
$$

which is impossible since x_{0} is a point of minimum. This contradiction proves the first inequality, and the proof of the second is similar.

For $0<\gamma$, let $u_{*}=\varepsilon \phi_{1}$, where $\varepsilon>0$ is a small positive number to be determined. If $\delta>0$, then, for $x \in \Omega$,

$$
\Delta u_{*}(x)+p(x)\left[u_{*}(x)+\delta\right]^{-\gamma}=p(x)\left(\varepsilon \phi_{1}(x)+\delta\right)^{-\gamma}-\varepsilon \lambda_{1} \phi_{1}(x)
$$

Therefore, since $\phi_{1} \mid \partial \Omega=0$, we may choose $\varepsilon>0$ and $\delta_{0}>0$ such that if $0<\delta \leq \delta_{0}$, then

$$
\begin{equation*}
\Delta u_{*}(x)+p(x)\left[u_{*}(x)+\delta\right]^{-\gamma}>0, \quad \forall x \in \bar{\Omega} \tag{4}
\end{equation*}
$$

If $\gamma>1$, we let $u^{*}(x)=u_{2}(x)=b_{2} \phi_{1}(x)^{t}$. Clearly, if δ_{0} is as above,

$$
\begin{equation*}
\Delta u^{*}(x)+p(x)\left[u^{*}(x)+\delta\right]^{-\gamma}<0, \quad \forall x \in \Omega \tag{5}
\end{equation*}
$$

If $\gamma>1$, we also suppose that $\varepsilon>0$ is chosen so that $u_{*}(x)=\varepsilon \phi_{1}(x)<$ $u_{2}(x)=u^{*}(x)$.

If $0<\gamma \leq 1$, let s be chosen to satisfy the two inequalities

$$
\begin{equation*}
0<s<1, s(1+\gamma)<2 \tag{6}
\end{equation*}
$$

Let $u^{*}(x)=c \phi_{1}(x)^{s}$ where c is a large positive constant to be chosen. For $x \in \Omega$ we have

$$
\begin{aligned}
& \Delta u^{*}(x)+p(x) u^{*}(x)^{-\gamma} \\
& \quad=-\phi_{1}(x)^{s-2}\left[\left|\nabla \phi_{1}(x)\right|^{2} c s(1-s)-p(x) c^{-\gamma} \phi_{1}(x)^{2-(1+\gamma) s}\right]-c \lambda_{1} s \phi_{1}(x)^{s}
\end{aligned}
$$

Since the inequalities (6) hold, we can choose $c>0$ so large that $\Delta u^{*}(x)+$ $p(x) u^{*}(x)^{-\gamma}<0$ for all $x \in \Omega$. Therefore, if δ_{0} is as above, then (5) holds for $0<\delta \leq \delta_{0}$.

Since $0<s<1$ and $\phi_{1}(x)=0$ for $x \in \partial \Omega$, we can assume c is so large that $\varepsilon \phi_{1}(x)<c \phi_{1}(x)^{s}$. It follows that with both the definitions of $u_{*}(x)$ and $u^{*}(x)$ given for $\gamma>1$ and the definitions of these functions when $0<\gamma \leq 1$, we have

$$
\begin{equation*}
0<u_{*}(x)<u^{*}(x), \quad \forall x \in \Omega \tag{7}
\end{equation*}
$$

Let δ be a fixed number, with $0<\delta<\delta_{0}$, and let $k>0$ be so large that the function $f(x, \xi)=k \xi+p(x)[\delta+\xi]^{-\gamma}$ is strictly increasing in ξ for $0 \leq \xi \leq M=\max \left\{u^{*}(x) \mid x \in \bar{\Omega}\right\}$ and $x \in \bar{\Omega}$. Let $w(x)$ be a smooth function such that

$$
\left\{\begin{array}{l}
-\Delta w(x)+k w(x)=f\left(x, u^{*}(x)\right), \quad x \in \Omega \tag{8}\\
w \mid \partial \Omega=0
\end{array}\right.
$$

Since, according to (6), $-\Delta u^{*}(x)+k u^{*}(x)>f\left(x, u^{*}(x)\right)$ for all $x \in \Omega$, it follows that $-\Delta\left(u^{*}-w\right)(x)+k\left(u^{*}(x)-w(x)\right)>0$ for all $x \in \Omega$. Therefore, since $\left(u^{*}-w\right) \mid \partial \Omega=0$ and $u^{*}-w \in C(\bar{\Omega}) \cap C^{2}(\Omega)$, it follows that $u^{*}(x)-$ $w(x)>0$ for all $x \in \Omega$. Hence, it follows from (8) that

$$
\left\{\begin{array}{l}
-\Delta w(x)+k w(x)>f(x, w(x)), \quad \forall x \in \Omega \tag{9}\\
w \mid \partial \Omega=0
\end{array}\right.
$$

According to (5), we have

$$
\begin{gathered}
-\Delta u_{*}(x)+k u_{*}(x)<f\left(x, u_{*}(x)\right), \quad \forall x \in \Omega \\
u_{*} \mid \partial \Omega=0
\end{gathered}
$$

By the same type of argument as given above, it follows that if $v(x)$ is a smooth function such that

$$
\begin{gathered}
-\Delta v(x)+k v(x)=f\left(x, u_{*}(x)\right), \quad x \in \Omega \\
v \mid \partial \Omega=0
\end{gathered}
$$

then $u_{*}(x)<v(x)$ for $x \in \Omega$, so

$$
\left\{\begin{array}{l}
-\Delta v(x)+k v(x)<f(x, v(x)) \tag{10}\\
v \mid \partial \Omega=0
\end{array}\right.
$$

Since

$$
-\Delta(w-v)+k(w-v)=f\left(x, u^{*}\right)-f\left(x, u_{*}\right)>0
$$

we have

$$
\begin{equation*}
v(x)<w(x), \quad \forall x \in \Omega \tag{11}
\end{equation*}
$$

Since u and w are smooth on $\bar{\Omega}$, it follows from (9), (10), and (11) and the basic result on the method of subsolutions and supersolutions [4] that there exists a smooth function z defined on $\bar{\Omega}$ such that

$$
\left\{\begin{array}{l}
-\Delta z+k z=f(x, z) \text { in } \Omega \\
z \mid \partial \Omega=0
\end{array}\right.
$$

and $u_{*}(x)<v(x) \leq z(x) \leq w(x)<u^{*}(x)$ for $x \in \Omega$. This means that

$$
\left\{\begin{array}{l}
\Delta z(x)+p(x)[z(x)+\delta]^{-\gamma}=0, \quad x \in \Omega \tag{12}\\
z \mid \partial \Omega=0
\end{array}\right.
$$

Let $\left\{\delta_{n}\right\}_{1}^{\infty}$ be a sequence of numbers such that $0<\delta_{n+1}<\delta_{n}<\delta_{0}$ for all $n \geq 1$ and, for $n \geq 1$, let $Z_{n}(x)$ be a smooth positive solution of (12) when $\delta=\delta_{n}$ such that $u_{*}(x)<Z_{n}(x)<u^{*}(x)$ on Ω. From (12) we have that $\Delta Z_{n}(x)+p(x)\left[\delta_{n+1}+Z_{n}(x)\right]^{-\gamma}>\Delta Z_{n}(x)+p(x)\left[\delta_{n}+Z_{n}(x)\right]^{-\gamma}=0$ for all $x \in \Omega$.

We claim that $Z_{n+1}(x)>Z_{n}(x)$ for all $x \in \Omega$. Assuming the contrary, it would follow that, since $\left(Z_{n+1}-Z_{n}\right) \mid \partial \Omega=0$, there would be a point $x_{0} \in \Omega$ where $Z_{n}-Z_{n+1}$ assumes a nonnegative maximum. But, from the above,

$$
\Delta\left(Z_{n}-Z_{n+1}\right)\left(x_{0}\right)>p\left(x_{0}\right)\left(\left[\delta_{n+1}+Z_{n+1}\left(x_{0}\right)\right]^{-\gamma}-\left[\delta_{n+1}+Z_{n}\left(x_{0}\right)\right]^{-\gamma}\right) \geq 0
$$

which is a contradiction.
Since $Z_{n}(x)<Z_{n+1}(x)<u^{*}(x)$ for all $x \in \bar{\Omega}, \lim _{n \rightarrow \infty} Z_{n}(x) \equiv u(x)$ exists for all $x \in \bar{\Omega}$ and

$$
\begin{equation*}
u_{*}(x) \leq u(x) \leq u^{*}(x) \tag{13}
\end{equation*}
$$

for $x \in \bar{\Omega}$. We claim that $u \in C^{2+\alpha}(\Omega)$ and that

$$
\begin{equation*}
\Delta u(x)+p(x) u(x)^{-\gamma}=0, \quad \forall x \in \Omega \tag{14}
\end{equation*}
$$

Although this follows from more or less standard arguments, we sketch the details.

Let $x_{0} \in \Omega$ and let $r>0$ be chosen so that $\overline{B\left(x_{0}, r\right)} \subset \Omega$, where $B\left(x_{0}, r\right)$ denotes the open ball of radius r centered at x_{0}. Let Ψ be a C^{∞} function which is equal to 1 on $\overline{B\left(x_{0}, r / 2\right)}$ and equal to 0 off $B\left(x_{0}, r\right)$. We have

$$
\Delta\left(\Psi Z_{n}\right)=2 \nabla \Psi \cdot \nabla Z_{n}+p_{n}
$$

for $n \geq 1$, where p_{n} is a term whose L^{∞} norm is bounded independently of n. Therefore, for $n \geq 1$, we have

$$
\Psi Z_{n} \Delta\left(\Psi Z_{n}\right)=\sum_{j=1}^{N} b_{n j} \frac{\partial\left(\Psi Z_{n}\right)}{\partial x_{j}}+q_{n}
$$

where $b_{n j}, j=1, \ldots, n$, and q_{n} are terms bounded independently of n for $n \geq 1$. Integrating the above equation, we have that there exist constants $c_{1}>0$ and $c_{2}>0$, independent of n, such that

$$
\int_{B\left(x_{0}, r\right)}\left|\nabla \Psi Z_{n}\right|^{2} d x \leq c_{1}\left(\int_{B\left(x_{0}, r\right)}\left|\nabla \Psi Z_{n}\right|^{2} d x\right)^{1 / 2}+c_{2}
$$

From this, it follows that the $L^{2}\left(B\left(x_{0}, r\right)\right)$-norm of $\left|\nabla \Psi Z_{n}\right|$ is bounded independently of n. Hence, the $L^{2}\left(B\left(x_{0}, r / 2\right)\right)$-norm of $\left|\nabla Z_{n}\right|$ is bounded independently of n. Let Ψ_{1} be a C^{∞} function which is equal to 1 on $\overline{B\left(x_{0}, r / 4\right)}$ and equal to 0 off $B\left(x_{0}, r / 2\right)$. We have, for $n \geq 1, \Delta\left(\Psi_{1} Z_{n}\right)=$ $2 \nabla \Psi_{1} \cdot \nabla Z_{n}+p_{1 n}$, where $p_{1 n}$ is a term whose $L^{\infty}\left(B\left(x_{0}, r / 2\right)\right)$-norm is bounded independently of n. From standard elliptic theory, the $W^{2,2}\left(B\left(x_{0}, r / 2\right)\right)$-norm
of $\Psi_{1} Z_{n}$ is bounded independently of n and hence, the $W^{2,2}\left(B\left(x_{0}, r / 4\right)\right)$ norm of Z_{n} is bounded independently of n. Since the $W^{1,2}\left(B\left(x_{0}, r / 4\right)\right)$ norms of the components of ∇Z_{n} are bounded independently of n, it follows from the Sobolev imbedding theorem that, if $q=2 N /(N-2)>2$ if $N>2$ and $q>2$ is arbitrary if $N \leq 2$, then the $L^{q}\left(B\left(x_{0}, r / 4\right)\right)$-norm of $\left|\nabla Z_{n}\right|$ is bounded independently of n. If Ψ_{2} is a C^{∞} function which is equal to 1 on $\overline{B\left(x_{0}, r / 8\right)}$ and equal to 0 off $B\left(x_{0}, r / 4\right)$, then $\Delta \Psi_{2} Z_{n}=2 \nabla \Psi_{2} \cdot \nabla Z_{n}+p_{2 n}$ where $p_{2 n}$ is bounded independently of n in $L^{\infty}\left(B\left(x_{0}, r / 4\right)\right)$. Since the righthand side of the above equation is bounded in $L^{q}\left(B\left(x_{0}, r / 4\right)\right)$, independently of n, the $W^{2, q}\left(B\left(x_{0}, r / 4\right)\right)$-norm of $\Psi_{2} Z_{n}$ is also bounded independently of n. Hence, the $W^{2, q}\left(B\left(x_{0}, r / 8\right)\right)$-norm of Z_{n} is bounded independently of n. Continuing the line of reasoning, after a finite number of steps, we find a number $r_{1}>0$ and $q_{1}>N /(1-\alpha)$ such that the $W^{2, q_{1}}\left(B\left(x_{0}, r_{1}\right)\right)$-norm of Z_{n} is bounded independently of n. Hence, there is a subsequence of $\left\{Z_{n}\right\}_{1}^{\infty}$, which we may assume is the sequence itself, which converges in $C^{1+\alpha} \overline{\left(B\left(x_{0}, r_{1}\right)\right)}$. If θ is a C^{∞} function which is equal to 1 on $\overline{B\left(x_{0}, r_{1} / 2\right)}$ and equal to 0 off $B\left(x_{0}, r_{1}\right)$, then

$$
\Delta\left(\theta Z_{n}\right)=2 \nabla \theta \cdot \nabla Z_{n}+\widehat{p}_{n}, \text { where } \widehat{p}_{n}=\theta \Delta Z_{n}+Z_{n} \Delta \theta .
$$

The right-hand side of the above equation converges in $C^{\alpha} \overline{\left(B\left(x_{0}, r_{1}\right)\right)}$. So, by Schauder theory, $\left\{\theta Z_{n}\right\}_{1}^{\infty}$ converges in $C^{2+\alpha} \overline{\left(B\left(x_{0}, r_{1}\right)\right)}$ and hence $\left\{Z_{n}\right\}_{1}^{\infty}$ converges in $C^{2+\alpha} \overline{\left(B\left(x_{0}, r_{1} / 2\right)\right)}$. Since $x_{0} \in \Omega$ was arbitrary, this shows that $u \in C^{2+\alpha}(\Omega)$. Clearly, (14) holds.

Since $u_{*}(x) \leq u(x) \leq u^{*}(x)$ for $x \in \bar{\Omega}$ and $u_{*}\left|\partial \Omega=u^{*}\right| \partial \Omega=0$, if $x_{1} \in \partial \Omega$, then $\lim _{x \rightarrow x_{1}} u(x)=0=u\left(x_{1}\right)$. Since u is continuous at each interior point of $\Omega, u \in C(\bar{\Omega})$.

To prove the uniqueness of u, suppose that \widehat{u} is also a function in $C^{2+\alpha}(\Omega) \cap$ $C(\bar{\Omega})$ which is positive on Ω such that $\Delta \widehat{u}+p(x) \widehat{u}^{-\gamma}=0$ on Ω and $\widehat{u} \mid \partial \Omega=$ 0 . If $\widehat{u} \not \equiv u$, then we may assume that $\widehat{u}-u$ assumes a positive value somewhere in Ω. This implies that $\widehat{u}-u$ attains a positive maximum at a point $x_{0} \in \Omega$. But $\Delta(\widehat{u}-u)\left(x_{0}\right)=p\left(x_{0}\right)\left[u\left(x_{0}\right)^{-\gamma}-\widehat{u}\left(x_{0}\right)^{-\gamma}\right]>0$, which is a contradiction. Hence $u \equiv \widehat{u}$. This concludes the proof of Theorem 1 .

3. Proof of Theorem 2

To prove this theorem, we use the following:
Lemma.

$$
\int_{\Omega} \phi_{1}^{r} d x<\infty
$$

if and only if $r>-1$.
Proof. Let $x_{0} \in \partial \Omega$. By the smoothness of $\partial \Omega$, we may assume that $x_{0}=0$ and that there exists a neighborhood U of x_{0} such that if $V=U \cap \Omega$, then V
consists of points $x=\left(x^{1}, \ldots, x^{N}\right)$ such that $\left|x^{j}\right|<r$ for $1 \leq j \leq N-1$ and $0<x^{N}<r$ and $U \cap \partial \Omega$ is the set of points x with $\left|x^{j}\right|<r$ for $1 \leq j \leq N-1$ and $x^{N}=0$. Since $\phi_{1}(\bar{x})=0$ and $\frac{\partial \phi_{1}}{\partial x^{N}}(\bar{x})>0$ for $\bar{x} \in \partial \Omega$, we may assume that r is so small that there exist constants $c_{1}>0$ and $c_{2}>0$ such that

$$
\begin{equation*}
c_{1} x^{N}<\phi_{1}(x)<c_{2} x^{N} \tag{15}
\end{equation*}
$$

for $x \in V$. Since ϕ_{1} is bounded below by a positive constant on any compact subset of Ω, the assertion of the lemma follows from (15) and a partition-ofunity argument.

In the remainder of this paper, we modify the definition of u_{*} as follows: If $0<\gamma \leq 1$, we define u_{*} as before, while if $1<\gamma$ we set $u_{*}(x)=u_{1}(x)=$ $b_{1} \phi_{1}(x)^{t}$. It follows from what was shown above that in either case, if u is the unique solution of (1) positive on Ω, then (13) continues to hold for all $x \in \Omega$.

Suppose first that $1<\gamma<3$, so $u_{*}(x)=b_{1} \phi_{1}(x)^{t}$, where $t=2 /(1+\gamma)$. Let the sequences $\left\{\delta_{n}\right\}_{1}^{\infty}$ and $\left\{Z_{n}\right\}_{1}^{\infty}$ be as above. Since $u_{*}(x) \leq Z_{n}(x)$ for $x \in \Omega$ and $n \geq 1$, it follows that

$$
\begin{aligned}
p(x) Z_{n}(x)\left[Z_{n}(x)+\delta_{n}\right]^{-\gamma} & \leq p(x)\left[Z_{n}(x)+\delta_{n}\right]^{1-\gamma} \\
& \leq p(x)\left[u_{*}(x)+\delta_{n}\right]^{1-\gamma}<M u_{*}(x)^{1-\gamma}
\end{aligned}
$$

for all $x \in \Omega$, where M is the maximum of $p(x)$ on $\bar{\Omega}$. If $r=2(1-\gamma) /(1+\gamma)$, then $r>-1$ so, by the lemma,

$$
\int_{\Omega} u_{*}(x)^{1-\gamma} d x<\infty
$$

Since for $n \geq 1$,

$$
\int_{\Omega}\left|\nabla Z_{n}\right|^{2} d x=\int_{\Omega} p(x) Z_{n}(x)\left[Z_{n}(x)+\delta_{n}\right]^{-\gamma} d x
$$

It follows that the $W^{1,2}$-norm of Z_{n} is bounded independently of n. Therefore some subsequence of $\left\{Z_{n}\right\}_{1}^{\infty}$ converges weakly in $W^{1,2}(\Omega)$ to a function \hat{Z} in $W^{1,2}$. Since $\left\{Z_{n}\right\}_{1}^{\infty}$ converges pointwise to u in Ω it is easy to see that $\widehat{Z}=u$. Hence $u \in W^{1,2}(\Omega)$.

If $0<\gamma<1$, then if

$$
\begin{aligned}
x \in \Omega p(x) Z_{n}(x)\left[Z_{n}(x)+\delta_{n}\right]^{-\gamma} & \leq p(x)\left[Z_{n}(x)+\delta_{n}\right]^{1-\gamma} \\
& \leq p(x)\left[u^{*}(x)+\delta_{n}\right]^{1-\gamma}
\end{aligned}
$$

where $u^{*}(x)=c \phi_{1}(x)^{s}$ and s is a positive number satisfying the inequalities (6). The above argument shows that the sequence $\left\{Z_{n}\right\}_{1}^{\infty}$ is bounded in $W^{1,2}(\Omega)$, and it follows that $u \in W^{1,2}(\Omega)$.

Suppose now that $\gamma \geq 3$. In this case $u^{*}(x)=b_{2} \phi_{1}(x)^{t}$ where $t=2 /(1+\gamma)$ so $t(1-\gamma) \leq-1$. Since $u(x) \geq u^{*}(x)$ for $x \in \Omega$ and $p(x) \geq m>0$ for all
$x \in \Omega$, it follows from the lemma that

$$
\begin{equation*}
\int_{\Omega} p(x) u(x)^{1-\gamma} d x=\infty \tag{16}
\end{equation*}
$$

Suppose, contrary to the assertion of the theorem, that $u \in W^{1,2}(\Omega)$. Since $u \in C(\bar{\Omega})$ and $u \mid \partial \Omega=0$, it follows that $u \in W_{0}^{1,2}(\Omega)$ [3, p. 147]. It follows that there exists a sequence C^{∞} functions $\left\{w_{n}\right\}_{1}^{\infty}$ having compact supports contained in Ω such that $w_{n} \rightarrow u$ in $W^{1,2}(\Omega)$ as $n \rightarrow \infty$. If for each n we set $w_{n}^{+}=\max \left(w_{n}, 0\right)$, then $w_{n}^{+} \in W_{0}^{1,2}(\Omega), \nabla w_{n}^{+}=\nabla w_{n}$ where $w_{n}>0$, and $\nabla w_{n}^{+}=0$ where $w_{n}<0$ [5]. From this it follows readily that $\left\{w_{n}^{+}\right\}_{1}^{\infty}$ converges to u in $W^{1,2}$. For $n \geq 1, w_{n}^{+}(x) p(x) u(x)^{-\gamma} \geq 0$ for all $x \in \Omega$, and some subsequence of $\left\{w_{n}^{+}\right\}_{1}^{\infty}$ converges to u almost everywhere on Ω. Therefore, if we replace $\left\{w_{n}^{+}\right\}_{1}^{\infty}$ by this subsequence it follows by (16) and Fatou's Lemma that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} w_{n}^{+} p u^{-\gamma} d x=\infty
$$

Since $\Delta u=-p(x) u^{-\gamma}$ on Ω and $w_{n}^{+} \in W_{0}^{1,2}(\Omega)$ for $n \geq 1$ it follows that for $n \geq 1$

$$
\int_{\Omega} \nabla u \cdot \nabla w_{n}^{+} d x=-\int_{\Omega} w_{n}^{+} \Delta u d x=\int_{\Omega} w_{n}^{+} p u^{-\gamma} d x
$$

Hence

$$
\int_{\Omega}|\nabla u|^{2} d x=\lim _{n \rightarrow \infty} \int_{\Omega} \nabla u \cdot \nabla w_{n}^{+} d x=\infty
$$

which contradicts the assumption that $u \in W^{1,2}(\Omega)$.
To prove the final statement, we note that if $x_{0} \in \partial \Omega$ and \vec{n} denotes the inner normal to $\partial \Omega$ at x_{0}, then $\phi_{1}\left(x_{0}\right)=0$, and

$$
\lim _{s \rightarrow 0+} \frac{\phi_{1}\left(x_{0}+s \vec{n}\right)}{s}=\lim _{s \rightarrow 0+} \frac{\phi_{1}\left(x_{0}+s \vec{n}\right)-\phi_{1}\left(x_{0}\right)}{s}=\nabla \phi_{1}\left(x_{0}\right) \cdot \vec{n}>0
$$

If $\gamma>1$, then $t=2 /(1+\gamma)<1$ and, as shown above, for $x \in \Omega, u(x) \geq$ $b_{1} \phi_{1}(x)^{t}$, where $b_{1}>0$. Since $u\left(x_{0}\right)=0$, it follows that, for $s>0$,

$$
\frac{u\left(x_{0}+s \vec{n}\right)-u\left(x_{0}\right)}{s} \geq b_{1} \phi_{1}\left(x_{0}+s \vec{n}\right)^{t-1} \frac{\phi_{1}\left(x_{0}+s \vec{n}\right)}{s} .
$$

Therefore

$$
\lim _{s \rightarrow 0+} \frac{u\left(x_{0}+s \vec{n}\right)-u\left(x_{0}\right)}{s}=+\infty
$$

so u is not in $C^{1}(\bar{\Omega})$. This proves the theorem.

4. Remarks and generalizations

In this section, we collect some obvious generalizations, where our method of proof gives additional information. All of our results can be written in terms of
a more general nonlinearity $f(x, u)$ with the appropriate abstract hypotheses on f, but we leave this as an exercise for the reader.
(i) In case Ω and p are radially symmetric, our proof shows that u is radially symmetric.
(ii) We do not know if it is always the case that u does not belong to $C^{1}(\Omega)$ if $\gamma=1$. The following simple example shows that, in general, u does not belong to $C^{1}(\bar{\Omega})$ when $\gamma=1$.

Let $N=1, \gamma=1, \Omega=(0,1)$, and $\gamma=1$. In this case,

$$
u^{\prime \prime}(x)+u(x)^{-1}=0
$$

for $0<x<1, u(0)=u(1)=0$, and $u(x)>0$ for $0<x<1$.
It follows that

$$
u^{\prime}(x)^{2} / 2+\log u(x)=c
$$

where c is a constant. Since $\log u(x) \rightarrow-\infty$ as $x \rightarrow 0$ or $x \rightarrow 1$, it follows that $u^{\prime} \rightarrow \infty$ as $x \rightarrow 0$ or $x \rightarrow 1$. Hence u does not belong to $C^{1}(\bar{\Omega})$.
(iii) A careful examination of our proof shows that additional results are available in the case where $p(x)$ is not bounded away from zero.

If, instead of $p(x)>c_{3}>0$ uniformly on Ω, we assume that $p(x) \phi_{1}^{-\delta}$ $\geq c_{3}>0$ uniformly on Ω, where δ satisfies $0<\delta<\gamma+1$, then instead of $u_{1}(x)=b_{1} \phi_{1}(x)^{t}$, we choose $u_{1}(x)=b_{1} \phi_{1}(x)^{(2+\delta) /(1+\gamma)}$, then we still have $u_{1}(x) \leq u_{2}(x)$, and

$$
\Delta u_{1}(x)+p(x) u_{1}(x)^{-\gamma}>0
$$

Thus we can show that $b_{1} \phi_{1}(x)^{(2+\delta) /(1+\gamma)} \leq u(x) \leq b_{2} \phi_{1}(x)^{2 /(1+\gamma)}$ on $\bar{\Omega}$ for b_{1} small and b_{2} large.
(iv) In the case where the region Ω has corners, our method of proof still gives some information. If one assumes that the region is a square in the plane, one can show that if there exist constants c_{1} and c_{2} such that, near the boundary,

$$
c_{1}<p(x) /\left(\left|\nabla \phi_{1}\right|\right)^{2}<c_{2}
$$

where, as before, ϕ_{1} is the first eigenfunction of the Laplacian for this region, then the conclusion of Theorem 1 applies.

We cannot give good boundary estimates in the case where the function $p(x)$ does not vanish at the corners.
(v) We can also give regularity results in the case where $p(x)$ goes to infinity at the boundary, at least in the case where the rate of growth is not too great.

If there exists a δ so that $s=(2-\delta) /(\gamma+1)$ is less than one, and the function $p(x)$ satisfies $c_{4} \geq p(x) \phi_{1}^{\delta} \geq c_{3}>0$ uniformly on Ω for some positive constants c_{3} and c_{4}, then, by choosing $u_{2}(x)=b_{2} \phi_{1}(x)^{(2-\delta) /(1+\gamma)}$, we can conclude that $b_{1} \phi_{1}(x)^{2 /(1+\gamma)} \leq u(x) \leq b_{2} \phi_{1}(x)^{(2-\delta) /(1+\gamma)}$ on $\bar{\Omega}$, for b_{1} small and b_{2} large.

Acknowledgment

The authors are grateful to Professor William Perry of Texas A. \& M. University for calling their attention to literature relevant to (1).

References

1. M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
2. J. A. Gatica, V. Oliker, and P. Waltman, Singular nonlinear boundary value problems for second order ordinary differential equations, J. Differential Equations 79 (1989), 62-78.
3. D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1977.
4. D. H. Satinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1972), 979-1000.
5. D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, 1980.
6. A. Nachman and A. Callegari, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 28 (1986), 271-281.
7. C. A. Stuart, Existence theorems for a class of nonlinear integral equations, Math. Z. 137 (1974), 49-66.
8. S. D. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Anal. 3 (1979), 897-904.

Department of Mathematics and Computer Science, University of Miami, Coral Gables, Florida 33124

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06268

[^0]: Received by the editors February 22, 1989 and, in revised form, February 20, 1990.
 1980 Mathematics Subject Classification (1985 Revision). Primary 35J25.
 Key words and phrases. Eigenfunction, subsolution, supersolution.
 Research of first author partially supported by NSF grant DMS-8722593.
 Research of second author partially supported by NSF grant DMS-8722532.

