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Abstract. Sato's idea of the asymmetric linking number is used in cyclic

branched coverings to give an invariant of the cobordism of embedded surfaces

in the 4-sphere.

In this article we consider the link cobordism of surface links in S1 . We

work in the smooth category.

Let F = J U F be a link in S , where J, K are embedded, oriented con-

nected surfaces. L is called semi-boundary [S] if each component bounds an

embedded, orientable 3-manifold in S which misses the other component.

Sato [S] defined the asymmetric linking number, denoted by alk(/, K), to be

the nonnegative generator of the image of Hx (K : Z) —► Hx (S \J: Z) = Z. He

proved that a link is semi-boundary iff

alk(7 ,K) = 0 = alk(F, J),

and being semi-boundary is preserved under link cobordism. We call two surface

links F0 = J0 u F0 and Lx = Jx u Kx cobordant if there are disjointly embed-

ded, orientable 3-manifolds C and F in S x I such that dC = J0 U (-/,),

dE — F0 U (-F,), and C, E are homeomorphic to J0 x I, K0 x I, respec-

tively, where we regard Li as lying in S x {/'}. A link is called null-cobordant

if it is cobordant to the standardly embedded surfaces (which bound disjoint

handlebodies) in S4. Thus alk can be regarded as the first obstruction to links

being null-cobordant, and we focus on semi-boundary links from now on. The

Sato-Levine invariant was defined [S] for semi-boundary links, and Cochran [C]

defined the derived series of this invariant. In this paper we observe that the

covering asymmetric linking number can be used as a link cobordism invari-

ant and give examples of links with vanishing Sato-Levine invariant and trivial

derivatives which belong to different cobordism classes.

Let F = J U F be a 2-component, oriented semi-boundary link. Consider

the «-fold cyclic branched covering M of S along J, where n = pr is a

prime power.  Then there are n lifts A:0, ... , kn_x  of K to M since F is
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semi-boundary. We can assume that A ¡ = t/c where x is the generator of

covering translations. We regard « as 0 and n + 1 as 1, so that the indices of

lifts are regarded as lying in Zn .

Lemma 1. Hx(M\kj : Q) is isomorphic to either 0 or Q. Furthermore, this

is a link cobordism invariant. More precisely, let L¡ = JiuK¡ (i = 0,1) be

cobordant links and Mi, k\ be their cyclic branched coverings and the lifts of K¡

respectively (i = 0, I, j = 0, ... , n - I). Then

Hx(M0\k^:Q) = Hx(Mx\k[J:Q).

In particular, this is Q if L is null-cobordant.

The proof is given later. If Hx (M\k, : Q) = 0, then F is not null-cobordant.

Thus we focus on links with Hx(M\kj : Q) = Q. Consider the following

homomorphism

Hx(kj'.Q) ^Hx(M\kQ: Q) = Q.

Definition 2. Define £" = 0 if this homomorphism is zero, £" = 1 otherwise

(j=l,...,n-l).

Theorem 3.  £" e Z2, j e Zn\{0}, are link cobordism invariants.

Proof of Lemma 1. Let Xn be the «-fold cyclic (unbranched) covering (X^

denotes the infinite cyclic covering) of X = S4\N(J). Then we have an exact

sequence ([S-S]) with integral coefficient

• ■ • - H9(XJ '^ Hq(XJ -, Hq(Xn) -, Hg_x(XJ - • - • ,

where / is the homomorphism induced from the generator of covering trans-

formations. Thus we have

HX(X)    -,   H0(XJ        A» Hq{Xoo)
Il = Il \       /
Z Z 0

Hence (t - 1): H^X^ : Z) -» H^X^ : Z) is surjective. Therefore (f - 1) =

(t - l)n: Hx(Xoo : Zp) —► Hx(Xoo : Zp) is also surjective (« - pr is a prime

power). Again using the exact sequence, we have Hx(Xn : Zp) = Zp . But the

lift of the meridian of J represents a nontrivial element of infinite order in

Hx(Xn : Z). Hence Hx(Xn : Q) = Q. Thus we have HX(M : Q) = 0. A
Mayer-Vietoris sequence with Q-coefficients gives

Hx(dN(kJ))    -,   Hx(N(kj))    ©   Hx(M\N(kJ))    ->   HX(M)

II II II
Q2g © Q Q2g 0

where g is the genus of F . Hence Hx (M\k. : Q) = 0 or Q.
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Let Li = Jiv>Ki (i = 0, 1) be cobordant links via C, F, and let W

be the «-fold cyclic branched covering of S x I along C,E- (j = 0, ... ,

n-l) be the lifts of F to W. Then dE¡ = k°Ll(-kj), where fcj are the lifts

of F; to M j, the «-fold branched covering of S along /. . (Note that we have

exactly « lifts of F because F;'s are semi-boundary and F is homeomorphic

to the product KQ x I.) The same argument shows that HX(W : Q) — 0 and

Hx(W\E0:Q) = 0 or Q.
We need to know the homomorphism   H2(MA)  —<•  H2(W).    Let   Y  =

S4 x I\N(C), Yn (resp. Y^) be the «-fold (resp. infinite) cyclic covering of

Y. Let X' = S4\Ji, X'n (resp. X'^) be the «-fold (resp. infinite) cyclic cov-

ering of X'. Since (t - 1): H^X'^ : Z) -* H^X'^ : Z) is surjective, it is

an isomorphism (because Hx(X'oo : Z) is a finitely generated module over a

Noetherian ring A = Z[t, F1], see [S-S]). Also we have H2(Y, X1) - 0 since

the inclusion induces an isomorphism Hm(Xl) = Ht(Y). Therefore we have

the following commutative diagram with Z-coefficients:

0 -, H2(X'J Ai hi{X'J - H2(X') -, 0

I                                 I I
0 - Hi(YJ ^ H2(YJ -, H2(Y) -, 0

I                                 I i
0   -,   HJY^X'J ^   H2(Y0O,X'0O) -,        0

Note that /„: H2(Xl) —► H2(Y) (the homomorphism induced from the in-

clusion map) is an isomorphism, and H2(Xl) = Z   , where h is the genus of

Consider the following splitting

H2(X'oc:Q) = F(Xioo:Q)®T(X'oo:Q)

where F(), T() denote the free and torsion part of H2( ) as a r = A ®z Q-

module respectively (r is a PID). Furthermore, T(Xioo : Q) = F°(^ : Q) ©

F'(^:Q), where

T°(X'oo:Q) = T/(t-l)p'®---®T/(t-l)^

is the (t - l)-summand and f'( ) is the (t - l)-free summand.

Comparing the above sequence to the following sequence

o-»r/(r- i)-+r/(?- i)"k ̂ r/(t- i)"k ->r/(t- i)^o,

where T/(t - 1) = Q, we conclude that F0^^) = 0.  (The same is true for

H2(YJ and tf^.Ó.)

Hence T(Xloo : Q) s T/Xx®- ■ ■®T/km where A, is normalized so that A, e A

and coefficients are relatively prime (j - I, ... , m).
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On the other hand, Cok(f - 1 : H^X'^ : Z) -* H^X'^ : Z)) is isomorphic to

H2(X'0O) ®A Z, where Z is regarded as A-module via the augmentation map

A —> Z, t —► 1 [S-S]. Since H2(X) is torsion free, we have X (1) = ±1,7 =

I, ... , m [S-S]. Then the same argument as Theorem 3 in [Sum] shows that

Cok(t" - 1 : TV,, : Q) - T(X'oo : Q)) = 0       (« = /).

The same is true for H^Y^, X'^) and we have H2(Yn , X'n : Q) = 0 (since

H2ÍYoc>xL)  is r-torsion), and hence i«,: H2(X'n : Q) -» H2(YH : Q)  is an

epimorphism.

Since t—\ is an isomorphism on T(X'O0), the sequence

0 -» F(X'oo) Ai F(X'J -, H2(X') -, 0

shows that rankrF(X'^) = 2g where g is the genus of 7;. The same is true

for Y^ and the similar exact sequences for t" - 1 show that dimQ H2 (X'n ) =

2gn = dimQ H2(Yn). Since it : H2(X'n) -, H2(Yn) is an epimorphism of vector

spaces of the same dimension, it is an isomorphism.

A Mayer-Vietoris sequence shows that /',: H2(M¡; Q) —► H2(W : Q) is an

isomorphism. Also we have the following Mayer-Vietoris sequences with Q-

coefficients:

H2(Mt)      -,        Hx(dN(k)))
1= 1 =

H2(W)       -        Hx(dN(Ej))

-,    Hx(N(k'j))    ©    H^M^Intmk'j))   -,   0
= 1 I

-,   Hx(N(Ej))    ®    Hx(W\IntN(EJ))   -,   0

It follows that

i9:Hx(Mi\kiJ:Q)-,Hx(W\Ej:Q)

is an isomorphism for i = 0, 1 and the lemma follows.   Q.E.D.

Proof of Theorem 3. We use the same notation as in the proof of Lemma 1.

Consider the following diagram with Q-coefficients:

H¿kJ)   -,   Hx(M0\k%)   =   Q
I I

Hx(Ej)    -,    HX(W\E0)    =   Q
î Î

Hx(k))    -,   Hx(Mx\k0l)    S    Q

Each vertical homomorphism is induced from an inclusion map and an iso-

morphism in Q-coefficients. Hence the top homomorphism is zero iff so is the

bottom homomorphism. Therefore A" is well-defined.   Q.E.D.

Example. Let Lm = Km 0 U Km ,  be an "untwisted spun link" indicated in

Figure 1, where «î is a positive integer.  (Regard S   as BxSuSxB.
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Figure 1

The circle in the 3-ball becomes a torus in S after spinning, and the spun

arc together with two disks in Aß    forms an S   in S .) • Thus Km n is

homeomorphic to 51 , and Km , to a torus. Furthermore, Km 0 and Km ,

are unknotted. One can calculate

„«        _ f 1    if ; = ±m (mod«),

j    m      I 0   otherwise,

for any prime power « . Hence Lm and Lm, are not cobordant to each other

unless m — m . Note that the Sato-Levine invariant vanishes and Cochran's

derivative is trivial for any m .
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