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SOME REMARKS ON THE HOMOLOGY OF MODULI SPACE
OF INSTANTONS WITH INSTANTON NUMBER 2
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(Communicated by Frederick R. Cohen)

Dedicated to Professor Akio Hattori on his sixtieth birthday

Abstract. Let M2 be the framed moduli space of SU(2) instantons with

instanton number 2. By combining the results of Boyer and Mann and the

results of Hattori, we determine the structure of H*(M2 ; Z2).

1. Introduction

We shall denote by Mk the framed moduli space of SU(2) instantons with

instanton number c2 = -k . Recently Boyer and Mann [1] constructed homol-

ogy operations on Mk for all k and thus constructed new homology classes in

Ht(Mk ; Z ). In the case k = p = 2, the result is as follows.

Theorem 1 [1]. The elements of HA\M2 ; Z2) constructed by Boyer and Mann

are given by the following table:

Q 1

Hq(M2;Z2) z,*[l] zx   z2*[l]

4

Qx(zx)  z2*zx   z3*[l]

5

Q2(zx)  z2  z3*zx

6 I 7

z\  Q2(z2)

Qx(z2)  z3*z2  Q3(zx)

9

<23U2) Qx(z3) QA*2^*3' G3(z3)

In another direction Hattori [4] completely determined the homotopy type

of M2 and as a result computed H*(M2 ; Z) and H*(M2 ; Z2). The results are

as follows.
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Theorem 2 [4]. The cohomology groups of M2 with Z coefficients are given by

the following table:

123 4 56 789

Hq(M2;Z) 0 Z3 ® Z4 zez,    o
generators ß p z ô      ßy     ßo     i   yô ßyo

Theorem 3 [4]. The cohomology groups of M2 with Z2 coefficients are given by

the following table:

Q
W(M2;Z2)

generators

1

u    v u     uv W     U V

9
uw U V

2
u w VW

3
U  W UVW

2
U VW u3vw

The choice of the elements v and w will be specified later.

In this paper we combine these results to obtain further homological infor-

mation about M,.

2. Main results

We first study the following problem. Do the elements of Theorem 1 generate

Hm(M2;Z2)1  '

Proposition 1. The elements of Theorem 1 generate Hf(M2 ; Z2) and the follow-

ing relations hold:

(1) Qx(zx) + z2*zx + z3*[l] = 0.

(2) Q2(zx) = z3*zx.

(3) Qx(z2) + z3*z2-rQ3(zx) = 0.

Proof. Let W2 be the orbit space of SU(2) connections with instanton number

2 by the action of the based gauge group and let i : M2 —► ^2 be the inclusion.

Direct computations show that each element of Theorem 1 is nontrivial in

Ht(W2 ; Z2) and differs in HJ&2 ; Z2) except for

¿„ô2(z2) = ¿»z3*zi-

Therefore by using Theorem 3 we see that the elements of Theorem 1 generate

Ht(M2;Z2) and there must be one relation for # = 3,4,5.

But [1, Proposition 9.10] shows that there are the following relations.

(i) it(Qx(zx) + z2*zx+z3*[l]) = 0.
(ii) i;(Q2(z1) + z3*z1) = 0.

Using Cartan formula and Adem relation [2] we also see the following relation.
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(iii) i,(Qx(z2) + z3*z2 + Q3(zx)) = 0.

Now by using Theorem 3 we see that the relations (i)-(iii) imply the relations

(l)-(3) in Proposition 1.

Next we shall study the Kronecker products of elements of Theorems 1 and 3.

On account of Proposition 1 we can take a basis of Hq(M2 ;Z2) for q = 3, 4, 5

as follows:

4 = 3    Qx(zx)    z2*zx

q = 4    z2 z3 * zx

# = 5    Qx(z2)    z3*z2

Theorem 4. The Kronecker products of elements of Theorems 1 and 3 are given

by the following table:

Kronecker products («,z, *[!]> = ! (u\z\)=0 {v,z\) = \

(u2,z2 *[!]> = !      <v,z2.[l]>=0

(«J,G,(z1))=0     {uv,Ql(zx))=\

(u , z2 * zx) = 1      (uv , z2 * z,) = 1

5

(w ,z\) = \ (u2v , z\) = 0

(w , z3 * zx) = 0     (u v , z3 * zx) = 1

<«iu,e,(z2)> = i   («Jîi,e1(z2)) = o

(«tu, z3 * z2) = 1      (w v , z3 * z2) = 1

(u2w, z3) = 0

(M2w,ß2(z2)>

(vw, z3) = 1

(tiw , ö2(z2)) = 0

(u'w , ß3(z2)) = 1       <MDtH,ß3(z2))=0

(U3«i,ß1(z3)) = o  (in;to,e,(x,)>-i

9

(u^w;,ß2(z3)) = l

(u'vw, Q}(z3)) = 1

In the above table we define v by

Note that

We define w by

(v,z]) = l,        (u,z2*[l]) = 0.

(u , z.) = 0,        (m , z2 * [1]) = 1

(w, z2) = 1 , (to, z3*z.) = 0

Note that

(u v , z2) = 0,        (« n , z3 * z, ) = 1
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Proof. Let A : Mk -+ Mk x Mk be the diagonal. Then we can easily show the

following relations.

A„Zj = z, C2> [1] + [1] <8> 2t,

Atz2 = z2 ® [1] + z, <g> z, + [1] <8> z2 ,

Atz3 = z3 <g> [1] + z2 <g> z, + z, <g> z2 + [1] <g> z3 .

The following relation is known in [2].

W«) = Eûi-r(«!)H(Î).
r,i

where A4a = J]s aí ® a" ■ Theorem 4 easily follows from these results.

Next we shall study the integral classes. On account of Theorem 2 there exists

an element a that generates Z4 in H3(M2; Z) and there exists an element x

that generates Z in H1(M2 ; Z). Let

j,:H¿M2;Z)-*H,(M2;Z2)

be mod 2 reduction.

We shall study jta and jtx.

Theorem 5. The following relations hold.

;> = z3*[l],

Proof. Let {E[} be the mod2 homology Bockstein spectral sequence of M2.

The following Nishida relation is known in [2].

ßQi(a) = (j-l)Qi~\a),

where ß is the Bockstein operation.

By using the Nishida relation we compute Et as follows.

< 0     z3*[l]     z\     0     0     Q3(z2)     0     0

From this table Theorem 5 follows.

Next as an application of Proposition 1 and Theorem 4, we prove the fol-

lowing theorem.

Theorem 6. The elements of Theorem 2 satisfy the following relations:

(1) ß2 = 26,
(2) c52 = 0,

(3) y2 = ßo.

Note that Theorem 6 completely determines the ring structure of H*(M2;Z).
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Proof. (1) is shown in [4].

As HS(M2 ; Z) = 0 holds, (2) follows.

We shall prove (3). Let

j,:H*(M2;Z)-*H*(M2;Z2)

be mod 2 reduction.

All we have to show to prove (3) is j^y ^ 0. Let u, v , w be elements in

Theorem 3. Either jmy = u or uv or u + uv holds. We shall show that

jty = u   cannot occur. Assertion 1. The following relations hold.

u  = 0,        v   = w .

In fact, in the same way as the proof of Theorem 4, we see the following

Kronecker products.

(t/,z2) = 0,        (u , z3*z{) = 0,

(w2,z2) = l,        (v2, z3*zx) = 0.

Assertion 2. The following relation holds.

jj = u.

In fact, the following holds.

j\ß = Sq u = u .

Now suppose jty = u . The table in Theorem 2 shows that

Wr)*o.
But from Assertions 1 and 2 we have

JAßy) = UJ)Uj) = u2u=o.

This is a contradiction. Therefore either jmy = uv or u  + uv holds. Anyway

,.    ,2        2   2        2      , „
(j»y) = u v = u w¡¿o.

This completes the proof of (3).

Remark. In [4], whether y  = 0 or not is left unknown.

Now by using the above results, we can completely determine H*(M2 ; Z2).

Theorem 7. H*(M2; Z2) = Z2[u, v]/(u , vA) and Sqxv = uv hold. Note that

the sé (2)-module structure of H*(M2 ; Z2) is completely determined.

Proof. The ring structure follows from Theorem 3 and Assertion 1 in Theorem

6. By using Theorem 4 and the following Kronecker products we can easily

prove Sq v = uv .

(Sqv,Qx(zx)) = l,        (SqXv,z2*zx) = l.

3. Appendix

The proof of Proposition 9.5 seems incomplete in [1]. By using Theorem 3,

we shall give an explicit proof of this proposition.
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Proposition 9.5 [1].   z¡ * [1] = Q\l] for i =1,2,3.

Proof. The proof of zx * [1] = Qx[l] is given in [1].

(i) Proof of z2 * [1] = ß2[l]. Let / : M2 -* £l32S3 be the inclusion. Clearly

H2(ÇÏ32S3 ; Z2) = Z2®Z2 and the basis of ßJl]2*[-2] and ß2[l]. By Theorem

3, H2(M2 ; Z2) = Z2 e Z2. Note that z2, 02t1] > z2 * [1] are elements of

H2(M2; Z2). But

fA) \Kzx = Qx[l]*[-l],

\/,z2 = £2[l]*[-l]

are given in [1, Theorem 8.6]. Hence itz2 = (Qx[l]* [-1])2 = Qx[l]2 * [-2]

and /.ß2[l] = ß2[l]. Therefore /, : H2(M2;Z2) — H2(Q32S3 ; Z2) is an iso-

morphism. But i„(z2 * [1]) = (Q2[l] * [-1]) * [1] = Q2[l] by (A). Therefore

z*2[l] = ß2[l] holds.

(ii) Proof of z *, 3[1] = Q3[l]. Let / : SO(3) -> M2 be the composite of

SO(3) -► Mx x 1 -» Mx x Mx -U M2 and let g : SO(3) -+ Af2 be the composite

of

SO(3) -» S3 xz  1 x 1 -» 53 xz A/j x Mx -^ M2.

Clearly fzt = zl. * [1] and ^z¿ = ß,-[l] hold for / = 1,2,3. But we have

shown the following.

By Theorem 3, all we need is to prove the following equalities.

(u , fz3) = (u , gtz3),        (uv , fz3) = (uv , gtz3).

Let A be the diagonal; then we easily see the following.

Atz3 = z3 <g> 1 -I- z2 ® zx + zx ® z2 + 1 ® z3.

Then (u3, fz3) = (u2, fz2)(u, fzx) = (u2, gtz2)(u, g,zx) = (u3, gtz3).

(uv , fz3) = (uv , gmz3) is similarly proved.
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