ON *r***-SEPARATED SETS IN NORMED SPACES**

JUAN ARIAS-DE-REYNA

(Communicated by Andrew M. Bruckner)

ABSTRACT. The separation of a bounded set A in a metric space $\delta(A)$ is defined as the supremum of the numbers r > 0 such that there exists a sequence (x_n) in A such that $d(x_n, x_m) > r$ for every $n \neq m$. We prove for every bounded set A in a Banach space that $\delta(A) = \delta(\operatorname{co}(A))$ where $\operatorname{co}(A)$ denotes the convex hull of A. This yields a generalization of Darbo's fixed point theorem.

1. INTRODUCTION

In 1939 Kuratowski [10] introduced the measure of noncompactness $\alpha(A)$ of a bounded set A in a metric space X. $\alpha(A)$ is called the *Kuratowski measure of noncompactness*, and is defined as the greatest lower bound of the numbers r > 0 such that A can be decomposed into a finite union of sets of diameter smaller than r. The condition $\alpha(A) = 0$ therefore means that A is precompact. Another measure of noncompactness, which in many cases seems to be more convenient, is called the *ball-measure*, $\beta(A)$, and is defined as the infimum of the real numbers r > 0 such that there is a finite cover of A with *balls* of radii smaller than r.

These and other measures of noncompactness were used by Darbo [2], Massat [11], Sadovskii [12], and Banaś and Goebel [1] to obtain some fixed point theorems of nonlinear maps. In general, a measure of noncompactness on a complete metric space X is a function γ which maps every bounded set $B \subset X$ to a positive real number $\gamma(B)$ such that:

(a) $\gamma(B) = 0$ if and only if \overline{B} is compact;

(b) if $B \subset C$ are bounded sets, then $\gamma(B) \leq \gamma(C)$.

Furthermore, if B is a closed convex bounded subset of a Banach space X, an operator $T: B \to B$ is called γ -condensing if for all bounded sets $C \subset B$ we have $\gamma(T(C)) \leq \gamma(C)$ with equality if and only if $\gamma(C) = 0$.

The following theorem (Sadovskii [12], Massat [11]) illustrates the utility of these concepts.

© 1991 American Mathematical Society 0002-9939/91 \$1.00 + \$.25 per page

Received by the editors February 26, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 46B20; Secondary 54E40.

Theorem. Let X be a Banach space and $B \subset X$ a closed convex bounded set. Let $T: B \to B$ be a continuous and γ -condensing operator, where γ is a measure of noncompactness on X such that

- (c) $\gamma(A \cup B) = \gamma(A)$ for every finite set $B \subset X$;
- (d) $\gamma(A) = \gamma(co(A))$ for every bounded set $A \subset X$, where co(A) denotes the convex hull of A.

Then T has a fixed point.

In Wells and Williams [13], another measure of noncompactness is defined: the *separation* of A, $\delta(A)$, is the supremum of the numbers r > 0 such that there exists a sequence (x_n) in A such that $d(x_n, x_m) > r$ for every $n \neq m$. They use it because this measure can distinguish between the unit balls of Banach spaces. The measure of the unit ball seems to be connected with the reflexivity of a Banach space (Kottman [9]). And the theorem of Elton and Odell [6] insures that $\delta(B) > 1$ for the unit ball B of every infinite dimensional Banach space.

This same concept of separation of A has been defined independently by Domínguez Benavides [3] and is denoted by $\mu(A)$. He observes [4] that in some Banach spaces as the l_p spaces $(1 , <math>\delta(A) = \mu(A)$ is proportional to the β -measure. In other spaces, say $L^p[0, 1]$ $(p \neq 2)$, this relation is not satisfied.

Observe that the above fixed point theorem would apply to this measure of noncompactness if we proved that

$$\delta(A) = \delta(\operatorname{co}(A))$$

for every bounded subset A of a Banach space. The purpose of this paper is to prove this. It is important to point out that, in a recent paper, Domínguez Benavides [5] proves that every α -contraction is a δ -contraction, so the fixed point theorem obtained in our paper generalizes the fixed point theorem of Darbo [2].

In §2 we give a probabilistic lemma (Corollary 2) that plays an essential role in the proof of the main theorem (Theorem 5). In that proof we also use an easier version of a deep theorem of D. H. Fremlin and M. Talagrand about random graphs, which we enunciate as Theorem 3.

2. PROBABILISTIC LEMMAS

Lemma 1. Let μ , ν be two probability measures on the space [-1, 1] such that

$$\int_{-1}^{1} x \, d\mu(x) - \int_{-1}^{1} x \, d\nu(x) \ge s > \theta > 1 \,,$$

then there exists a real number $t_0 \in [\theta - 1, 1]$ such that

$$\mu[-1, t_0) + \nu[t_0 - \theta, 1] \le (2 - s)/(2 - \theta).$$

Proof. Observe that an elementary calculation leads us to

$$\int_{-1}^{1} (1+x) \, d\mu(x) = \int_{0}^{2} \mu[-1+t, \, 1] \, dt = \int_{-1}^{1} \mu[t, \, 1] \, dt \, .$$

It follows that

$$\int_{-1}^{1} x \, d\mu(x) = 1 - \int_{-1}^{1} \mu[-1, t) \, dt$$
$$\int_{-1}^{1} x \, d\nu(x) = \int_{-1}^{1} \nu[t, 1] \, dt - 1 \, .$$

Therefore

$$\int_{-1}^{1} x \, d\mu(x) - \int_{-1}^{1} x \, d\nu(x) = 2 - \int_{-1}^{1} \mu[-1, t) - \int_{-1}^{1} \nu[t, 1] \, dt$$

= $2 - \int_{-1}^{1} \mu[-1, t) - \int_{-1+\theta}^{1+\theta} \nu[t-\theta, 1] \, dt$
 $\leq 2 - \int_{-1+\theta}^{1} (\mu[-1, t) + \nu[t-\theta, 1]) \, dt.$

Define $\psi(t) = (\mu[-1, t) + \nu[t - \theta, 1])$. By the hypothesis we know that

$$2-s\geq\int_{-1+\theta}^1\psi(t)\,dt\,.$$

Then $\psi(t) > (2-s)/(2-\theta)$ for every $t \in [-1+\theta, 1]$ would lead to a contradiction. It follows that there exists $t_0 \in [-1+\theta, 1]$ such that $\psi(t_0) \le (2-s)/(2-\theta)$.

We shall use the following corollary in the proof of the main theorem.

Corollary 2. Let (Ω_1, \mathbb{P}_1) , (Ω_2, \mathbb{P}_2) be two probability spaces and $X_i: \Omega_i \to E$ two random variables with values in the same Banach space E. Assume that $||X_i||_{\infty} \leq 1$ and

 $\|\mathbb{E}(X_1) - \mathbb{E}(X_2)\| \ge s > \theta > 1.$

Then there exist two measurable subsets $A \subset \Omega_1$ and $B \subset \Omega_2$ such that

(1)
$$\mathbb{P}_1(A) + \mathbb{P}_2(B) \le (2-s)/(2-\theta) < 1$$
.

(2)
$$\omega_1 \notin A \text{ and } \omega_2 \notin B \text{ implies } ||X_1(\omega_1) - X_2(\omega_2)|| > \theta$$
.

Proof. There is no loss of generality in assuming that the Banach space E is real. Let $x^* \in E^*$ be a vector of the dual space such that $||x^*|| = 1$ and

$$\|\mathbb{E}(X_1) - \mathbb{E}(X_2)\| = \mathbb{E}(x^* \circ X_1) - \mathbb{E}(x^* \circ X_2).$$

Let μ and ν be the image of the measures \mathbb{P}_1 and \mathbb{P}_2 under the mappings $x^* \circ X_1$ and $x^* \circ X_2$. Since $||X_i||_{\infty} \leq 1$, μ and ν are probability measures on [-1, 1]. Observe that

$$\int_{-1}^{1} x \, d\mu(x) - \int_{-1}^{1} x \, d\nu(x) = \mathbb{E}(x^* \circ X_1) - \mathbb{E}(x^* \circ X_2) \ge s > \theta > 1 \, .$$

Applying the lemma we find $t_0 \in [\theta - 1, 1]$ such that

$$\mu[-1, t_0) + \nu[t_0 - \theta, 1] \le (2 - s)/(2 - \theta) < 1.$$

Define $A = (x^* \circ X_1)^{-1}[-1, t_0)$ and $B = (x^* \circ X_2)^{-1}[t_0 - \theta, 1]$. Thus $A \subset \Omega_1$ and $B \subset \Omega_2$ are measurable sets that satisfy (1).

If $\omega_1 \notin A$ and $\omega_2 \notin B$, then $x^*(X_1(\omega_1)) \ge t_0$ and $x^*(X_2(\omega_2)) < t_0 - \theta$. It follows that

$$||X_1(\omega_1) - X_2(\omega_2)|| \ge x^*(X_1(\omega_1) - X_2(\omega_2)) > \theta$$

and (2) is also satisfied.

We shall use the following consequence of a theorem of D. H. Fremlin and M. Talagrand [7]:

Theorem 3. Let (Ω_n, \mathbb{P}_n) be a sequence of probability spaces. For every m < n, let $B_{n,m} \subset \Omega_n$ be a measurable set such that $\mathbb{P}_n(B_{n,m}) \leq \alpha < 1$. Then there exists an infinite set $J \subset \mathbb{N}$ such that, for every $n \in J$,

$$\mathbb{P}_n\left(\bigcup_{\substack{m< n\\m\in J}} B_{n,m}\right) < 1.$$

Proof. We apply the theorems 6C and 6D [7] to the probability space $\Omega = \prod_{i=1}^{\infty} \Omega_i$ and the measurable sets

$$E_{n,m} = \Omega \setminus \left(B_{n,m} \times \prod_{j \neq n} \Omega_j \right)$$

in order to obtain the theorem.

3. Theorem about the measure of noncompactness

Let us recall that if $A \subset X$ is a bounded subset in a metric space X, the separation of A, $\delta(A)$ is defined as the supremum of the real numbers r > 0 such that there exists a sequence (x_n) in A verifying $||x_n - x_m|| > r$ for every two distinct elements x_n , x_m of the sequence.

We begin making a reduction in the possible counterexample to $\delta(A) = \delta(\operatorname{co}(A))$.

Proposition 4. Let A be a bounded subset of the normed space X such that $\delta(A) < \delta(\operatorname{co}(A))$. Then, for every s verifying $\delta(A) < s < \delta(\operatorname{co}(A))$, there exists a set B contained in the ball of center 0 and radius s and such that

$$\delta(B) \leq \delta(A) < \delta(\operatorname{co}(A)) = \delta(\operatorname{co}(B)).$$

Proof. Take a maximal set $\{a_k\}_{k=1}^N$ of points belonging to A such that $i \neq j$ implies $||a_i - a_j|| \ge s$. The number N of elements is finite since $\delta(A) < s$.

1090

It is clear that A is contained in the union of the balls $B(a_k, s)$ of center a_k and radius s:

$$A \subset \bigcup_{k=1}^N B(a_k, s).$$

Every point $x \in co(A)$ can be written in the form $x = \sum_{k=1}^{N} \alpha_k x_k$, where $\alpha_k \ge 0$, $\sum \alpha_k = 1$ and $x_k \in co(A \cap B(a_k, s))$. Now, given $\varepsilon > 0$, let $\{z_n\}_{n=1}^{\infty}$ be a sequence of points in co(A) such that $n \ne m$ implies $||z_n - z_m|| > \delta(co(A)) - \varepsilon$.

Write every z_n in the form:

$$z_n = \sum_{k=1}^N \alpha_k^n y_k^n,$$

where $\alpha_n^k \ge 0$, $\sum_{k=1}^N \alpha_k^n = 1$, and $y_k^n \in co(A \cap B(a_k, s))$. Choose an infinite subset $I \subset \mathbf{N}$ such that if $n, m \in I$, then for all $k \le N$,

$$|\alpha_k^n - \alpha_k^m| < \varepsilon/(N \cdot \sup_{a \in A} ||a||).$$

Now let $n, m \in I$ and $n \neq m$. Then there exists a natural number k such that $||y_k^n - y_k^m|| > \delta(\operatorname{co}(A)) - 2\varepsilon$, because otherwise

$$\begin{split} \|z_n - z_m\| &\leq \left\| \sum_{k=1}^N \alpha_k^n (y_k^n - y_k^m) + (\alpha_k^n - \alpha_k^m) y_k^m \right\| \\ &\leq (\delta(\operatorname{co}(A)) - 2\varepsilon) \cdot 1 + \sup_{a \in A} \|a\| \sum_{k=1}^N |\alpha_k^n - \alpha_k^m| \\ &< \delta(\operatorname{co}(A)) - \varepsilon \,, \end{split}$$

which contradicts the hypothesis.

Applying the Ramsey theorem, T. Jech [8], we obtain an infinite set J contained in I and an index k such that $n, m \in J$, $n \neq m$ imply $||y_k^n - y_k^m|| \ge \delta(\operatorname{co}(A)) - 2\varepsilon$. Therefore, for every $\varepsilon > 0$, there exists an index k, $1 \le k \le N$, such that $\delta(\operatorname{co}(A \cap B(a_k, s))) \ge \delta(\operatorname{co}(A)) - 2\varepsilon$. Hence there exists an index k such that

$$\delta(\operatorname{co}(A \cap B(a_k, s))) \ge \delta(\operatorname{co}(A)).$$

Furthermore we observe that $\delta(A \cap B(a_k, s)) \leq \delta(A)$. We can translate the set $A \cap B(a_k, s)$ and obtain the set $B = -a_k + A \cap B(a_k, s)$, which is contained in the ball of center 0 and radius s and satisfies

$$\delta(B) \leq \delta(A) < \delta(\operatorname{co}(A)) \leq \delta(\operatorname{co}(B)).$$

Theorem 5. Let $A \subset X$ be a bounded subset of a normed space X. Then $\delta(A) = \delta(\operatorname{co}(A))$.

Proof. Suppose that the theorem is false. Then Proposition 4 implies that there exists a subset A of the unit ball of a Banach space E, such that

$$\delta(A) < 1 < s < \delta(\operatorname{co}(A)).$$

We can take a sequence (x_n) in co(A) such that for every $n \neq m$, $||x_n - x_m|| \ge s$. As $x_n \in co(A)$, there exists a finite subset $\Omega_n \subset A$ and, for every $e \in \Omega_n$, a real number $\alpha_e > 0$ such that

$$x_n = \sum_{e \in \Omega_n} \alpha_e e$$
 and $\sum_{e \in \Omega_n} \alpha_e = 1$.

Let \mathbb{P}_n be the probability defined on Ω_n by

$$\mathbb{P}_n(B) = \sum_{e \in B} \alpha_e \,,$$

for every $B \subset \Omega_n$.

For every n, let $X_n: \Omega_n \to E$ be the random variable, defined as the identity in Ω_n . It is clear that if we choose θ such that $1 < \theta < s$, we have, for every $n \neq m$,

$$\|\mathbb{E}(X_n) - \mathbb{E}(X_m)\| = \|x_n - x_m\| > s > \theta > 1$$

We are now in a position to apply our probabilistic lemma and find subsets $B_{n,m} \subset \Omega_n$ and $B_{m,n} \subset \Omega_m$ verifying:

- (a) $\mathbb{P}_n(B_{n-m}) + \mathbb{P}_m(B_{m-n}) \le (2-s)/(2-\theta) < 1$.
- (b) $e_n \notin B_{n,m}$ and $e_m \notin B_{m,n}$ implies $||e_n e_m|| \ge \theta$.

For every natural number m_0 , $(B_{m_0,n})_{n>m_0}$ is a sequence of subsets of the finite set Ω_{m_0} . It follows that we can find an infinite set $J \subset \mathbb{N}$ such that $B_{m_0,n}$ is independent of $n \in J$. By a diagonal argument we can obtain an infinite set $J \subset \mathbb{N}$ such that if $n > m, n, m \in J$, $B_{m,n}$ is independent of n. We call it B_m . Now by exchanging the sequence $(x_n)_{n \in \mathbb{N}}$ for $(x_n)_{n \in J}$, we can also assume that the original sequence satisfies these conditions.

Let $\delta = (2-s)/(2-\theta) < 1$, and choose $0 < \varepsilon < (1-\delta)/2$. We can assume that $\lim \mathbb{P}_n(B_n)$ exists, call it l. Thus $l = \lim \mathbb{P}_n(B_n) \le 1$; even more, we can assume $|\mathbb{P}_n(B_n) - l| < \varepsilon$ for every natural number n.

Now, for every pair of natural numbers n > m

$$\mathbb{P}_n(B_{n,m}) + \mathbb{P}_m(B_m) \le (2-s)/(2-\theta) = \delta < 1.$$

Hence $l \leq \delta$ and $l - \varepsilon < \mathbb{P}_m(B_m) \leq \delta$.

Therefore we can consider the spaces $\Omega'_n = \Omega_n \setminus B_n$ endowed with the measures $\mathbb{P}'_n = (1 - \mathbb{P}_n(B_n))^{-1}\mathbb{P}_n$. This measure is well defined because $\mathbb{P}_n(B_n) \leq \delta < 1$. Now, for every m < n,

$$\begin{split} \mathbb{P}_n'(B_{n,m} \setminus B_n) &= \frac{\mathbb{P}_n(B_{n,m} \setminus B_n)}{1 - \mathbb{P}_n(B_n)} \leq \frac{\mathbb{P}_n(B_{n,m})}{1 - \mathbb{P}_n(B_n)} \leq \frac{\delta - \mathbb{P}_m(B_m)}{1 - \mathbb{P}_n(B_n)} \\ &\leq \frac{1 - \mathbb{P}_n(B_n) + (\mathbb{P}_n(B_n) - \mathbb{P}_m(B_m)) - (1 - \delta)}{1 - \mathbb{P}_n(B_n)} \\ &\leq 1 - \frac{1 - \delta - 2\varepsilon}{1 - \mathbb{P}_n(B_n)} \leq 1 - \frac{1 - \delta - 2\varepsilon}{1 - l + \varepsilon} \\ &= 1 - \alpha < 1 \,. \end{split}$$

Hence the conditions in the hypothesis of the D. H. Fremlin and M. Talagrand theorem are satisfied. So, we obtain an infinite set $J \subset \mathbb{N}$ such that, for every $n \in J$,

$$\mathbb{P}'_n\left(\bigcup_{\substack{m< n\\m\in J}} (B_{n,m}\setminus B_n)\right)<1.$$

Now, if we put $B_n = B_{n-n}$, it follows that

$$\mathbb{P}_n\left(\bigcup_{\substack{m\leq n\\m\in J}} B_{n,m}\right) < 1.$$

Thus there exists, for every $n \in J$, $e_n \in \Omega_n$ such that

$$e_n \notin \bigcup_{\substack{m \leq n \\ m \in J}} B_{n,m}$$

Now if n > m and $n, m \in J$, we have $e_n \notin B_{n,m}$ and $e_m \notin B_{m,m}$. Therefore $e_m \notin B_{m,n}$. Condition (b) insures that $||e_n - e_m|| \ge \theta$. We have thus found a sequence of points $(e_n)_{n \in J}$ in A, such that for every $n \ne m$, $n, m \in J$, $||e_n - e_m|| \ge \theta > 1$ which contradicts $\delta(A) < 1$.

ACKNOWLEDGMENT

I would like to thank Professor L. Rodríguez Piazza for advising me to simplify my first proof and for his important contribution to manage it. I would also like to thank Professor T. Domínguez Benavides for proposing to me the question solved in this paper and for fruitful and patient discussions during its preparation.

References

- 1. J. Banaś and K. Goebel, *Measures of noncompactness in Banach spaces*, Marcel Dekker, New York, 1980.
- 2. G. Darbo, Punti uniti in transformazioni a condominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
- 3. T. Domínguez Benavides, Some properties of the set and ball measures of non-compactness and applications, J. London Math. Soc. (2) 34 (1986), 120–128.
- 4. ____, Set-contractions and ball-contractions in some classes of spaces, J. Math. Anal. Appl. 136 (1988), 131-140.
- 5. T. Domínguez Benavides and G. López Acedo, Fixed points of asymptotically contractive mappings J. Math. Anal. Appl. (to appear).
- 6. J. Elton and E. Odell, The unit ball of every infinite dimensional normed linear space contains a $(1 + \varepsilon)$ -separated sequence, Colloq. Math. 44 (1981), 105–109.
- 7. D. H. Fremlin and M. Talagrand, *Subgraphs of random graphs*, Trans. Amer. Math. Soc. **291** (1985), 551-582.
- 8. T. Jech, Set theory, Academic Press, New York, 1978.

JUAN ARIAS-DE-REYNA

- 9. C. Kottman, Packing and reflexivity in Banach spaces, Trans. Amer. Math. Soc. 150 (1970), 565-576.
- 10. K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309.
- 11. P. Massat, Some properties of condensing maps, Ann. Mat. Pura Appl. (4) 125 (1980), 101-115.
- 12. B. N. Sadovskii, On a fixed point principle, Funktsional Anal. i Prilozhen 4 (1967), 74-76.
- 13. J. H. Wells and L. R. Williams, *Embeddings and extensions in analysis*, Springer-Verlag, Berlin, 1975.

Universidad de Sevilla, Facultad de Matemáticas, Apdo. 1160, 41080-Sevilla, Spain