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ON r-SEPARATED SETS IN NORMED SPACES

JUAN ARIAS-DE-REYNA

(Communicated by Andrew M. Bruckner)

Abstract. The separation of a bounded set A in a metric space 6(A) is de-

fined as the supremum of the numbers r > 0 such that there exists a sequence

(xn) in A such that d(xn , xm) > r for every n ^ m . We prove for every

bounded set A in a Banach space that 6(A) = S(co(A)) where co(A) de-

notes the convex hull of A . This yields a generalization of Darbo's fixed point

theorem.

1. Introduction

In 1939 Kuratowski [10] introduced the measure of noncompactness a(A)

of a bounded set A in a metric space X. a(A) is called the Kuratowski

measure of noncompactness, and is defined as the greatest lower bound of the

numbers r > 0 such that A can be decomposed into a finite union of sets of

diameter smaller than r. The condition a(A) = 0 therefore means that A is

precompact. Another measure of noncompactness, which in many cases seems

to be more convenient, is called the ball-measure, ß(A), and is defined as the

infimum of the real numbers r > 0 such that there is a finite cover of A with

balls of radii smaller than r.

These and other measures of noncompactness were used by Darbo [2], Mas-

sat [11], Sadovskii [12], and Banas and Goebel [1] to obtain some fixed point

theorems of nonlinear maps. In general, a measure of noncompactness on a com-

plete metric space X is a function y which maps every bounded set B c X

to a positive real number y(B) such that:

(a) y(B) = 0 if and only if B is compact;

(b) if B c C are bounded sets, then y(B) < y(C).

Furthermore, if B is a closed convex bounded subset of a Banach space X, an

operator T: B —► B is called y -condensing if for all bounded sets C c B we

have y(T(C)) < y(C) with equality if and only if y(C) = 0.

The following theorem (Sadovskii [12], Massât [11]) illustrates the utility of

these concepts.
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Theorem. Let X be a Banach space and B c X a closed convex bounded set.

Let T: B —> B be a continuous and y-condensing operator, where y is a measure

ofi noncompactness on X such that

(c) y (A U B) = y (A) for every finite set B C X ;

(d) y (A) = y(co(A)) for every bounded set A c X, where co(A) denotes the

convex hull of A.

Then T has a fixed point.

In Wells and Williams [13], another measure of noncompactness is defined:

the separation of A, 0(A), is the supremum of the numbers r > 0 such that

there exists a sequence (xn) in A such that d(xn,xm) > r for every n /

m. They use it because this measure can distinguish between the unit balls

of Banach spaces. The measure of the unit ball seems to be connected with

the reflexivity of a Banach space (Kottman [9]). And the theorem of Elton and

Odell [6] insures that 0(B) > 1 for the unit ball B of every infinite dimensional

Banach space.

This same concept of separation of A has been defined independently by

Domínguez Benavides [3] and is denoted by p(A). He observes [4] that in some

Banach spaces as the / spaces (1 < p < +00), 0(A) = p(A) is proportional

to the /i-measure. In other spaces, say Lp[0, 1] (p ^ 2), this relation is not

satisfied.

Observe that the above fixed point theorem would apply to this measure of

noncompactness if we proved that

6(A) = ô(co(A))

for every bounded subset A of a Banach space. The purpose of this paper is

to prove this. It is important to point out that, in a recent paper, Domínguez

Benavides [5] proves that every a-contraction is a ¿-contraction, so the fixed

point theorem obtained in our paper generalizes the fixed point theorem of

Darbo [2].

In §2 we give a probabilistic lemma (Corollary 2) that plays an essential role

in the proof of the main theorem (Theorem 5). In that proof we also use an

easier version of a deep theorem of D. H. Fremlin and M. Talagrand about

random graphs, which we enunciate as Theorem 3.

2. Probabilistic lemmas

Lemma 1. Let p,v be two probability measures on the space [-1, 1] such that

/   xdp(x) - /   xdu(x) > s > 6 > 1,

then there exists a real number t0e[9 - 1, 1] such that

p[-i,t0) + u[t0-e,i]<(2-s)/(2-d).
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Proof. Observe that an elementary calculation leads us to

/   (l+x)dp(x)=      p[-l +t, l]dt = /   p[t,l]dt.
7-1 7o 7-1

It follows that

)dt/   xdp(x) = 1 - /   p[-l, t),

/   xdu(x) =   /   v[t, l]dt- 1.
-i

Therefore

/   xdp(x)-      xdu(x) = 2-l   p[-l, t) - I   v[t, 1]

/•l rl+6

= 2-    p[-i,t)- /    u[t-e, i]
7-1 J-i+e

<2- /    (/¿[-i, r) + i/[í-9, i])¿r
-l+e

Define y/(t) = (p[-l, t) + v[t - 8, 1]). By the hypothesis we know that

-i

2-5 > /       y/(t)dt.
7-1+0

Then y/(t) > (2 - s)/(2 - 6) for every t €[—1 + 6,1] would lead to a con-

tradiction. It follows that there exists t0 £ [-1 + 0,1] such that y/(t0) <

(2-s)/(2-6).

We shall use the following corollary in the proof of the main theorem.

Corollary 2. Let (Clx, P, ), (Í22, P2) be two probability spaces and Xi : Q; —► E

two random variables with values in the same Banach space E.  Assume that

Halloo ̂ ! and
\\K(XX)-E(X2)\\ >s>6>1.

Then there exist two measurable subsets A c Í2, and B c€l2 such that

(1) rx(A) + ¥2(B)<(2-s)/(2-6)<l.

(2) tox £ A and co2£ B implies \\Xx(cox) - X2(co2)\\ > 6.

Proof. There is no loss of generality in assuming that the Banach space E is

real. Let x* £ E* be a vector of the dual space such that ||x*|| = 1 and

\\E(Xx)-E(X2)\\=E(x*oXx)-E(x*oX2).

Let p and v be the image of the measures P, and P2 under the mappings

x*oXx and x* oX2. Since 11-^,11^ < 1 , P and v are probability measures on

[-1, 1]. Observe that

/   xdp(x)-       xdv(x) = E(x* oXx)-E(x* oX2)>s> d > 1.
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Applying the lemma we find t0e[6 - 1, 1] such that

/i[-l,t0) + u[t0-6, l]<(2-s)/(2-6)< 1.

Define A = (x* oXx)~x[-1, t0) and B = (x* °X2)~x[t0 - 6, 1]. Thus A c £2,

and B c Í22 are measurable sets that satisfy (1).

If <y, £ /Í and co2 £ B, then ^(^(co,)) > i0 and x*(X2(co2)) < t0- 6.

It follows that

\\Xx(cox) - X2(co2)\\ > x*(Xx(cox) - X2(co2)) > 6

and (2) is also satisfied.

We shall use the following consequence of a theorem of D. H. Fremlin and

M. Talagrand [7]:

Theorem 3. Let (Qn ,¥n) be a sequence of probability spaces. For every m < n,

let Bn m c Cln be a measurable set such that Wn(Bn m) < a < 1. Then there

exists an infinite set J c N such that, for every n e J,

(

IK,
.   m<n
\meJ

Proof. We apply the theorems 6C and 6D [7] to the probability space Q

TTjîi &j and the measurable sets

in order to obtain the theorem.

3. Theorem about the measure of noncompactness

Let us recall that if A c X is a bounded subset in a metric space X, the

separation of A , 0(A) is defined as the supremum of the real numbers r > 0

such that there exists a sequence (xn) in A verifying \\xn - xm\\ > r for every

two distinct elements xn, xm of the sequence.

We begin making a reduction in the possible counterexample to 0(A) =

ô(co(A)).

Proposition 4. Let A be a bounded subset of the normed space X such that

ô(A) < ô(co(A)). Then, for every s verifying Ô(A) < s < ô(co(A)), there exists

a set B contained in the ball of center 0 and radius s and such that

Ô(B) < Ô(A) < ô(co(A)) = ô(co(B)).

nal set {ak}k=x of points belonging

implies ||a(. - a. || > s . The number N of elements is finite since S (A) < s .

Proof. Take a maximal set {ak}k=x of points belonging to A such that i jí j
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It is clear that A is contained in the union of the balls B(ak , s) of center

a,  and radius 5 :
N

Ac{j B(ak , s).
k=\

Every point x £ co(A) can be written in the form x = ^2k=x otkxk , where ak >

0,J2ak = 1 and xk £ co(A n B(ak , s)). Now, given e > 0, let {zn}°^=x be a

sequence of points in co(A) suchthat n^m implies \\zn-zm\\ > ô(co(A))-e.

Write every zn in the form:

N
En   n

akyk'

k=\

where an > 0, Y^k=l a"k = 1, and y"k £ co(A n B(ak , s)). Choose an infinite

subset 7 c N such that if n , m £ I, then for all k < N,

\ot"k -ak\ <fi/(7V-sup||a||).
a€A

Now let n, m £ I and n ^ m. Then there exists a natural number k such

that \\yk - y™\\ > S(co(A)) - 2e , because otherwise

<
En,   n m,       ,   n m,   r,

ak(yk-yk) + (ak~ak)yk

k=\

< (S(co(A)) - 2e) • 1 + sup ||a|| J^ \al ~ a
a€A       k=\

< ô(co(A)) -e,

which contradicts the hypothesis.

Applying the Ramsey theorem, T. Jech [8], we obtain an infinite set / con-

tained in 7 and an index k such that n, m £ J, n ^ m imply \\yk -yk\\ >

S(co(A)) - 2e . Therefore, for every e > 0, there exists an index k , 1 < k < N,

such that S(co(A D B(ak , s))) > S(co(A)) - 2e . Hence there exists an index k

such that

ô(co(ADB(ak,s)))>â(co(A)).

Furthermore we observe that ô(A n B(ak , s)) < ô(A). We can translate the set

AnB(ak , s) and obtain the set B = -ak + AC\B(ak , s), which is contained in

the ball of center 0 and radius s and satisfies

Ô(B) < Ô(A) < ô(co(A)) < ô(co(B)).

Theorem 5. Let A c X  be a bounded subset of a normed space X.   Then

0(A) = S(co(A)).

Proof. Suppose that the theorem is false. Then Proposition 4 implies that there

exists a subset A of the unit ball of a Banach space E, such that

ö(A) < 1 <s<S(co(A)).
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We can take a sequence (xn) in co(A) such that for every n ^ m , \\xn -xm\\ >

s. Ks xn e co(A), there exists a finite subset Qn c A and, for every e e Qn ,

a real number a  > 0 such thate

X„ =n =  E aee    and      E ae = l
een„ een„

Let Pn be the probability defined on Cln by

e£B

for every B c Í2„ .

For every n , let Xn : Qn -» £ be the random variable, defined as the identity

in Qn . It is clear that if we choose 6 such that 1 < 6 < s, we have, for every

n t¿ m,

||E(XJ-E(XJ|| = ||x„-xJ|>s>0>l.

We are now in a position to apply our probabilistic lemma and find subsets

Bn,m C "«   and  Bm,n C "m   Verifying:

(a) W,J + PA,J<(2-i)/(2-ô)<l.
(b) en   t  Bn,m   and  em   t  Bm,n   imPlieS   11^ "««Il > Ö-

For every natural number m0 , (Bm n)n>m is a sequence of subsets of the finite

set Q    .  It follows that we can find an infinite set J c N such that B
m0 rnQ,n

is independent of n e J. By a diagonal argument we can obtain an infinite

set J c N such that if n > m, n, m £ J, Bm n is independent of n. We

call it Bm . Now by exchanging the sequence (xn)n&i for (xn)neJ , we can also

assume that the original sequence satisfies these conditions.

Let S = (2 - s)¡(2 - 6) < 1, and choose 0 < e < (1 - S)/2. We can assume

that lim P^ (Bn ) exists, call it /. Thus / = lim Pn (Bn ) < 1 ; even more, we can

assume \Fn(Bn) - l\ < e for every natural number n .

Now, for every pair of natural numbers n > m

W,J + PA)<(2-*)/(2-0)=¿<!.

Hence l <ó and l-e< fm(Bm) < ô .

Therefore we can consider the spaces Cl'n = £ln\Bn endowed with the mea-

sures F'n = (1 -Fn(Bn))~xFn. This measure is well defined because Fn(Bn) <

5 < 1 . Now, for every m < n ,

Vf {B        \B\       *»&n,m\*n)  ^^   Wn.m)    ^/-FJBJ
»V   n,m\   n>-     l-Fn(Bn)    -l-Fn(Bn)~   l-Fn(Bn)

l-Fn(Bn) + (Fn(Bn)-FJBm))-(l-â)

-        l - ô - 2e <        1 - <? - 2e

\-Fn(Bn)- 1-l + e

= l-a<l.
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Hence the conditions in the hypothesis of the D. H. Fremlin and M. Talagrand

theorem are satisfied. So, we obtain an infinite set J c N such that, for every

n £ J,
f \

K        \J(Bn,m\Bn)      <1.
m<n

\meJ J

Now, if we put Bn= Bn n , it follows that

/ \

LU,
V

m<n
meJ

< 1

)

Thus there exists, for every n £ J , en £ Qn such that

e   é   I J  B
m<n

Now if n > m and n, m £ J, we have en $. Bn m and em <fc Bm m. There-

fore em £ Bm n. Condition (b) insures that lk„-em|| > 0 ■ We have thus found

a sequence of points (en)n€J in A, such that for every n ^ m, n,m e J,

\en- em\\ > Ö > 1 which contradicts S (A) < 1.
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