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(Communicated by R. Daniel Mauldin)

Abstract. In this note we shall introduce a, as far as we know, new kind of

derivative (diagonal derivative), characterizing a certain class of functions 8¿

and a generalized Daniell integral I¿ on this class. We follow Leinert and

König to obtain a class of integrable functions -2^' belonging to %d , using the

method of Daniell-Stone integration without the lattice condition as described

in [1] or similarly in [3]. Our main purpose is to show that we obtain exactly

the Denjoy integrable functions.

We proceed in three steps. In §1, with a little change in a minor detail,

we briefly put together the most important things about Leinert's method of

Daniell-Stone integration without the lattice condition as described in [1]. In

§2, after some other prerequisites, we introduce the notion of diagonal differ-

entiability, leading to a class of integrable functions Jz^1 by using § 1. A more

detailed comparison of these functions with the Lebesgue integrable functions

follows. In §3, we give a new characterization of ACG-functions in which diag-

onal differentiability is involved. As a consequence, the functions of J^1 turn

out to be exactly the Denjoy integrable functions.

Note that in the theory of Perron and Denjoy a generalized form of dif-

ferentiability describes the integrable functions in a direct way (as generalized

derivatives), whereas in our theory a notion of differentiability is used to define

the function space 1% from which the integrable functions are obtained by a

Daniell-Stone procedure.

1. DANIELL-STONE INTEGRATION WITHOUT THE LATTICE CONDITION

Let us first describe Leinert's method of avoiding the lattice condition in

Daniell-Stone integration.

Given a nonvoid set X and a real vector space W (not necessarily a lattice)

of functions X —> R, a functional / : If —> R is called a Daniell integral, if it is

linear, positive (i.e. /(/) > 0 whenever / > 0) and if it satisfies the following

condition (continuity from below): For arbitrary / £ <o , f„£ %+ we have

oo oo

£/«>/^ £/(/«) >/(/).
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As usual in integration theory, the value +00 is not excluded when dealing with

sums of nonnegative numbers or functions. Here and further on, for a set &

of functions X -> R, we define ^"+ to be the set of all / £ 9~ with / > 0.

On the set 90 of all functions X —> [0, 00], the functional 7 is defined by

£/(/„)|/„ g r+, £/„ > /U [0, 00].

Note that inf0 = 00.  For an arbitrary /: X —> R the (T-)Norm of / is

'•— 7(|/|) • The functional 7 is countably subadditive, i.e.

'[£/«]<£'(/«)      V/i,/2,-.-e^.

A function /: X —► R is called (I-) integrable, if for every e > 0 there is

g £ <o with ||/ - #i| < e. The space of all integrable functions is denoted by

Sfx = .S91 (X, %, I). This differs a little from the definition in [1], since there
the approximating functions g £ £? are required to have finite norm. But this

is not at all essential, so the following remains true by the same argument as

in [1]. If f £ Sfl and gn £ I? are functions with ||/- g„|| -+ 0, then the
(/-) integral of / over X is well defined by

/
fdl := lim I(gn) £ R.

n-

A function g: X —* R is called a null function if \\g\\ = 0. A set A c X is

called a null set if its characteristic function Xa is a null function. A property

Q is said to hold almost everywhere (a.e.) if it holds outside some null set.

Let us recall the following proposition from [1].

1.    Proposition. For f, g : X —» R we have:

(i)   f = g a.e.  =* 11/11 = ||*H'.
(ii)   / € &x and f = g a.e.  =► g £ &x and f fdl = j gdl.

(iii)   / 6 J?1 => {x £ X\ \f(x)\ = oc} is a null set.

(i) and (ii) suggest to identify a.e. equal functions in S?x . If we do so, we

can now regard J?1 as a real vector space since it follows from (iii) and (ii)

that, given any / £ Jz?1, we can find a real valued g £ J2?71 with f = g a.e.

The (I—) integral / dl is then easily recognized as a positive, linear functional

on &x.

Moreover || || is a pseudonorm on Jz?1 , i.e. it has the norm properties

but +00 is not excluded as a possible value. Defining Cauchy sequences and

completeness as usual, we mention that (¿?l, \\ ||) is a complete, pseudonormed

vector space.

If the condition _ t
I(f) = jfdl Vf£(J?X

is satisfied (which need not be true in general, cf. [1]), the monotone conver-

gence theorem (and some other results) remain valid.

2. The diagonal derivative and the /¿-integral

Let us first put together some other prerequisites. For the following, let J c R
be any interval (bounded or not).  The Dini derivatives D+F , D~F , D+F ,

m-
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D-F of a function F: J —> R are defined as usual. For F, G: J —> R the
four inequalities

D±(F + G)(x) < D±F(x) + D±G(x),

D±(F + G)(x) > D±F(x) + D±G(x)

hold respectively, whenever the right-hand sums are defined in R. If G is

differentiable in x (with derivative in R) we have

D±(F + G)(x) = D±F(x) + G'(x),

D±(F + G)(x) = D±F(x) + G'(x).

For the sake of simplicity, we say a property Q = Q(x) for elements x £ X

holds nearly everywhere (n.e.), if the set {x £ X\Q(x) is false} is at most
countable.

2. Proposition. For any F: J —► R one has D-F < D+F n.e.

A simple proof is given in [4, Chapter IV, 4].

3. Proposition. For any continuous F: /->R:

D+F > 0 n.e. => F is nondecreasing.

Again, a simple proof can be found in [4, Chapter XI, 4].

Let c £ [-co, oo] be an endpoint of the interval icR and F: J —» R a

real function. We say that F(c) exists, if the limit

F(c) := lim F(x) £ R
x€J
x—>c

exists. Of course, this is always true if c_e / and F is continuous in c. For

an interval J with endpoints a < b in R we write J = (a, b) if we want to

leave it open which of the endpoints a , b do or do not belong to J .

For an interval J = (a, b) we define %? = %?(J) to be the space of all

continuous functions F: J —> R for which F (a), F(b) exist and which satisfy
the condition

D-F = D+F £ R n.e.

4. Proposition. For F, G £ %f and c > 0 we have cF, F + G £ %* and

D-(cF) = cD-F = cD+F = D+(cF) n.e.,

D-(F + G) = D-F + D-G = D+F + D+G = D+(F + G) n.e.

Proof. The assertion for cF is trivial. For F, G £^t we have

D+(F + G)< D+F + D+G n.e. and

D-(F + G)> D-F + D-G n.e.,

since the right-hand Dini derivatives are in R n.e. and thus the right-hand

sums are defined n.e. By proposition 2, applied to F + G, we have

(*) D-F + D-G < D-(F + G) < D+(F + G) < D+F + D+G n.e.

Since D^F = D+F £ R and D-G = D+G £ R n.e., equality must hold n.e. in
(*) and the assertion follows.   D
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We now define 3? = &(J) to be

5? := ¿F - %T = {Fi - F2\Fi ,F2£ß?}

and call the members of "§ diagonally differentiable (i/-differentiable) func-

tions. For F = F\ - F2 £ 2? (F\, F2 £ ßf) we define a function D(F\, F2) on

J by

D(Fi   F2)(x) ■= i D+F^x)-D+F^x)   ^D+F,(x),D+F2(x) £ R,

\ 0   elsewhere,

and call D(FX , F2) a diagonal derivative (¿/-derivative) of F . Note that

D(F{, F2) = D+Fi - D+F2 n.e.

by the definition of ßf. It makes no sense to define a pointwise diagonal

derivative, because it is not too difficult to find a function F £ %? having

decompositions F = F\ - F2 - G\ - G2   (F\ ,F2,G\,G2£ %f), such that

D-F¡ = D+Fi £ R,    D-Gi = D+G¡ £ R everywhere   (i = 1, 2)

(except, perhaps, at the endpoints of /), but

D+Fi(x) -D+F2(x) jt D+Gi(x) - D+G2(x)       \/x£A,

with a countable set Ac J ; moreover, such functions exist for every countable

A , provided that A has no accumulation-point in the interior of J . But this

is almost the worst thing that can happen:

5. Lemma. Two diagonal derivatives of a function F £ "§ coincide n.e.

Proof. Let F = Fx - F2 = Gx - G2 (F. , F2, Gx, G2 £ %*). By Proposition 4
we have n.e.

D+Fi +D+G2 = D+(FX + G2) = £»+(^2 + Gi) = D+F2 + D+Gx.

By the definition of ß^, all Dini derivatives are in R n.e., thus

D(Fi, F2) = D+Fx - D+F2 = D+Gx - D+G2 = D(Gl, G2) n.e.    D

6. Proposition. Let F £ &, F = F, - F2   (Fx,F2£ßT).

(i)   D(Fi, F2) > 0 n.e.  =¡> F is nondecreasing.

(ii)   D(F\, F2) = 0 n.e.  =$> F = constant.

Proof. Since D+F\ , D+F2 £ R n.e. we conclude

D+Fi = D+(F + F2) < D+F + D+F2 n.e. =>

D+F > D+Fi - D+F2 = D(Fi ,F2)>0 n.e.

Thus, if D(Fi, F2) > 0 n.e. we must have D+F > 0 n.e. and (i) follows from

Proposition 3. Of course, (ii) is any easy consequence of (i).   G

Lemma 5 allows us to speak of the diagonal derivative DF of a function

F £ S?, if we identify diagonal derivatives which are equal n.e. In this sense, D

is easily recognized to operate linearly on ff? (use Proposition 4). Proposition

6 ensures that any F £ & is (up to a constant) uniquely determinated by its

diagonal derivative DF . In the remainder, for F £ %?, the symbol DF stands

for any diagonal derivative D(Fi, F2)   (Fi, F2 £ %?, F = Fx - F2).
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7. Lemma. If F £ & and M = {x £ J\F'(x) £ R exists), then

DF — F' n.e.   on M.

Proof. With F = Fi - F2   (Fx ,F2£ßT) we have

D+Fi = D+(F + F2) = F' + D+F2   everywhere on M ^

F' = D+Fi - D+F2 = D(Fi , F2) = DF n.e.    on M.   D

8. Definition. A function F £ & is called an indefinite diagonal integral (in-

definite ^-integral) of /: / = (a, b) —► R, if / = DF n.e. We furthermore
define

1% = (^¿(J) '■= {/: J -* R|/ has an indefinite ¿-integral}.

For / £ êj and an indefinite cf-integral F of / we set

Id(f):=F(b)-F(a).

Proposition 6(ii) ensures, that I¿ is well defined. Obviously, §¿ is a real

vector space and I¿ : %¿ -+ R is a linear and, by Proposition 6(i), also a positive

functional. We want to show, that /¿ is a Daniell integral, but for the missing

property of continuity from below we need some further preparations. By % =

%(J) we denote the space of all continuous g: J —» R with compact support

(relative to J).

9. Lemma. Let J = {a, b) and g¡ £ &+   (i = 0, 1,2,...) with

oo       .b

£ /  gf(t)dt< oo.
0   Ja

V g = S gi and G : J —y R is defined by

G(x):= f  g(t)dt,
Ja

then g < D-G everywhere on J\{a} .

Proof. Let x £ J\{a} . For arbitrary y £ (a, x) and n £ N we can estimate

Since the right-hand side tends to Y11=o gi(x) as y T jc , it follows that

«

D-G(x) > £ gi(x)       VfisN=> D-G(x) > g(x).    D
;=0

10. Lemma. Let /e§¿ and g¡ be nonnegative, Lebesgue integrable functions
(i = 0, 1, 2, ... ). Then we have

oo oo        -ft

/ < £ gi n.e. =» /,(/) < £ /   ^(0 ^?-

Proof. We may assume
oo      .b

£ /   g,(t) dt <oo,
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for otherwise there is nothing to show. Let us first regard the case, where all g¡

are in 8^+ . Building G as in Lemma 9, from the assumption /<]££» ne- it

follows
oo

0<£g;-/<£>-G-/n.e.
(=0

by Lemma 9. If F — F\ — F2 (Fx, F2 £ %?) is an indefinite ¿/-integral of
/ e i¿ we therefore obtain n.e.

0<D-G-D+Fi +D+F2

= D-G + D-F2-D+Fi

<D-(G + F2)-D+Fi

<D+(G + F2) - D+Fi    (by Proposition 2)

= D+(G-F + Fi)-D+Fi

< D+(G -F) + D+Fi - D+Fi = D+(G - F).

Thus D+(G — F) >0 n.e. and G - F is nondecreasing by Proposition 3. This

yields
oo      -b

W) = Fib) - F (a) < G(b) - G(a) = £ /   g,(t) dt,
;=0 Ja

as desired.

If now the g¡ are arbitrary, nonnegative, Lebesgue integrable functions, for

a given e > 0 we can find gik £ W+ (i, k = 0, 1,2,...) such that for every

i the following is satisfied:
oo

\gi-gi0\ < £ gik,

k=l

This is possible by the definition of the Lebesgue integral with the method of

Daniell. Thus, if / < YlHo Si n-e-> we bave f < ^2Tk=o Sik n-e- a fortiori and
hence

oo/„ OO       » \ OO/» \ oo       »

/,(/)<£ [/«.+E/teJ<g(/*+?+F)-E/*+4«
by what has already been shown. Since e > 0 was arbitrary, the general asser-

tion follows.   D

From now on the term "almost everywhere" (a.e.) is used in the ordinary

Lebesgue sense.

11.    Proposition. Every f £ &¿   is Lebesgue integrable with

Id(f)= Í f(t)dt.
J a

Proof. With an indefinite ¿/-integral F of / we have

DF = f > 0 n.e.,

forcing F to be nondecreasing by Proposition 6(i). A result of Lebesgue yields

that F is differentiable a.e. and F' is Lebesgue integrable with

f F'(t)dt<F(b)-F(a).
Ja

J-J giO <
2' £/**< 2'"
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Using Lemma (7) we obtain / = F' a.e., hence / is Lebesgue integrable with

/ f(t)dt= f F'(t)dt<F(b)-F(a) = Id(f).
J a J a

On the other hand, since we know that / is Lebesgue integrable, we also get

W)< / f(t)dt,
J a

as a special application of Lemma 10.   □

For / £ %d , fn £%'d+ with Ya fn > /> the combination of Lemma 10 and

Proposition 11 shows

oo      »ft oo

W)<£/    fn(t)dt = J2Id(fn).
,    Ja ■1    "u 1

Thus Id is continuous from below and we have shown:

12.    Theorem. The functional Id: <£d —► R is a Daniell integral.

Notice that obviously % c &¡¡ and that an ordinary indefinite integral of

g £ Wc is also an indefinite ¿/-integral of g, briefly:

% C %d > JdWc = Riemann or Lebesgue integral.

As described in §1, we now obtain the functional ld and a norm || ||¿ de-

fined by \\f\\d - Id(\f\) for an arbitrary /:7->R. We also get the space

¿¿?J = J2?d(J, %d, Id) of the /¿-integrable functions, together with the Id-

integral J dld on Jî?dx . With the ordinary Lebesgue norm || ||, defined by

f oo      . oo

:=infj£_/*„!&, eg'/, £*n>|/|

for any /: J —> R, we see at once, that || \\d < \\ || as a consequence of the

foregoing remark. To see that the reverse inequality is also true, let f:J—>R

be arbitrary. For showing ||/|| < \\f\\d we may assume \\f\\d < oo. Then, for
e > 0, we find g„ £ %d+ fulfilling

oo oo

l/l<£s«,      £/*(*,.)< II/L + «.
1 1

By Proposition 11, the countable subadditivity of the Lebesgue norm and the

fact that
rb

f \h(t)\dt = \\h\\
Ja

can estimate

°°     fb oo

< £ lls»ll = £ /  gn(t)dt = Y, Us«) < II/1U + e.
1 1    Ja 1

ed inequality since e > 0 was arbitrary.   Thus

proved || \\d = || ||, an important fact to remember for the remainder.

for Lebesgue integrable h , we can estimate

rb

< £s"
i

This yields the desired inequality since e > 0 was arbitrary.   Thus we have
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13. Proposition. Every Lebesgue integrable function is Id-integrable and the

integrals coincide.

Proof. For any Lebesgue integrable / we find gn £ Wc with ||/- g„\\ —► 0.

Since %c%d and || || = || ||¿ this shows at once that / £ Sfd . Furthermore

we have

rb rb rb

/   f(t)dt= lim  /   gn(t)dt= lim Id(gn)= /   fdld.   D
Ja n^°°Ja "-*00 Ja

14. Proposition. For all f£3'dx we have:

(i)   / is Lebesgue measurable.

(ii)   / is Lebesgue integrable <& \\f\\ < oo.

Proof. To prove (i), choose gn £ %d with \\f - g„\\d = \\f- gn\\ -» 0. It is well

known that in this case we can find a subsequence g„k with g„k —> / a.e. as

k —> oo . Thus, being a.e. the limit of the g„k, f surely is Lebesgue measurable

if the g„k are. But this is true, because every g £ ¿% is n.e. the difference of

two Dini derivatives of continuous functions and the latter are well known to be

even Borel measurable. This proves (i), and (ii) follows, because the statement

of (ii) is true for every Lebesgue measurable /.   D

15. Corollary, (i) The space (2'dx)+ consists exactly of the nonnegative,

Lebesgue integrable functions and the integrals coincide.

(ii) We have

Id(f)= ffdld       V/G(^>)+.
J

We already mentioned the importance of (ii) at the end of § 1.

Proof. With a look at Proposition 13, for proving (i), we only have to show,

that every f £ (Sfdx)+ is Lebesgue integrable. Since / is Lebesgue measurable

by (i) of the last proposition, the functions

fn ■= (fXJnl-n,n]) A«

are Lebesgue integrable with fn\ f. But now, with the aid of Proposition 13

and the positivity of / dld , we have

/ fn(t)dt= [ fndld< f fdld       V«.
Ja Ja Ja

The monotone convergence theorem yields that / = lim/„ is Lebesgue inte-

grable, (i) is proved.

Now (ii) follows immediately since for / £ (^d)+ we get

¡d(f) = ll/L = 11/11 = / f(t)dt = j fdld.   D
J a J a

16. Corollary. We have f £ =2¿   if and only if f admits a representation

f = g + h       g £^d , h Lebesgue integrable.

In this case, for an arbitrary e > 0 we can achieve \\h\\ < e.

Proof. Of course, every / decomposable in the indicated manner is in ¿zfj

(consider Proposition 13). Conversely, let / € 3$  and e > 0. We then find
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g £ gd with ||/ - g\\d = ||/ -g\\<e. Now f=g + h with h := / - g is the
desired representation, because \\h\\ < s yields the Lebesgue integrability of h
by proposition 14(ii).   D

The preceding corollary shall play an important role for our main purpose.

From it we recognize that indefinite /¿-integrals are exactly the sums of d-

differentiable and absolutely continuous functions. In the following section,

we shall show that decomposability into the sum of a ¿/-differentiable and an

absolutely continuous function is equivalent to the ACG-property. From this,

it is a short step to realize, that £?d consists exactly of the Denjoy integrable
functions.

3. A NEW APPROACH TO THE GENERAL DENJOY INTEGRAL

For sake of simplicity, from now on let J = [a, b] be a compact interval.

This is not at all essential, but customary in literature when dealing with the

Denjoy integral. The reader is assumed to be familiar with absolutely con-

tinuous functions (AC-functions), generalized absolutely continuous functions

(ACG-functions) and the notion of the (general) Denjoy integral. For a detailed

decription of these tools we refer to [3].

17.    Proposition. If a continuous F: J —> R satisfies the conditions

-oo < D-Fn.e.   and   D+F < oo n.e.,

then F is ACG on J.

Proof. For a suitable, at most countable A c J and every x £ J\A we find
n £ N, such that for t £ J we have

0 < t - x < i => F(t) - F(x) < n(t - x),

0 < x - t < ¿ => F(x) - F(t) > -n(x - t).

Therefore, letting

Mn := {x £ J\it £ J: \x - t\ < \ =► F(t) - F(x) < n\t - x\),

we have the countable union

oo

J = {JMnu\J{a}.
1 a€A

Thus it suffices to show that F is ACG on every Mn . But if we set

i    i+l'
M' := Mn n

n      n
a £ z)

M„ is the countable union of the Mln and F is AC on each Mln. For x, y £

M'n we have F(x) -F(y) < n\x-y\ and hence \F(x) - F(y)\ < n\x - y\ since

the roles of x and y can be interchanged. From this, the absolute continuity
of F on M„ follows immediately.   D

We now want to establish an important relation between ACG-functions and

the members of & . For an ACG-function F we denote by Fap its (a.e. defined)

approximate derivative (cf. [3]).
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18. Theorem. Let F £&.

(i)   F is ACG on [a,b] and hence approximately dijferentiable a.e.

(ii)   We have DF = Fap a.e.

Proof. By Proposition 17, the members of ßif are obviously ACG on J and

hence so are the members of & = ß? - ßf.

Now let F = Fi - F2   (Fx ,F2£ßif) and define

M := {x £ J\(Fi)'ap(x) exists, D-F¡(x) = D+F¡(x) £ R (i = 1, 2),

D(Fi, F2)(x) = D+Fi(x) - D+F2(x)}.

Because all constituting conditions for M are satisfied a.e. or n.e., for proving

(ii) it suffices to show that Fa'p(x) = D(Fi, F2)(x) forx£M. Therefore,

let x £ M and p¡ :— (Fi)'ap(x) (i = 1,2). Then, by the definition of the
approximate derivative, given any e > 0, x is a point of density of the sets

Me) := jy £ J\{x}\ft¡ - e < Fi{y) ~^'(x) < m + e J       (i = 1, 2)

and so, a fortiori, jc must be a bilateral accumulation point of these sets. From

this fact we conclude D-F¡(x) <//,+£ and D+Fi(x) > p,■ - e for arbitrary

e > 0,thus

pi<D+Fl(x) = D-Fi(x)<pi

and equality must hold (i = 1,2). So, for x £ M

Kpix) = (Fi)'ap(x) - (F2)'ap(x)

= ßl-p2 = D+Fi(x) - D+F2(x) = D(Fi, F2)(x),

what we wanted to show.   D

We now define a property for functions F : [a, b] —> R, which turns out to

be equivalent to the ACG property.

19. Definition. A function F : [a, b] —► R is called decomposable over [a, b],

if there exist G i, G2 £ ßif and an absolutely continuous H such that

(*) F = Gi-G2 + H.

The decomposition (*) is called an e-decomposition (e > 0), if the following

conditions are satisfied:

(i)   G2(a) = G2(b) = 0, ||G2|U<e.
(ii)   H(a) = H(b) = 0, \\H'\\ < s (and hence H//IU < e).

(iii)   IICIloo, ||G2||00<2||F||00.

Here || ||oo denotes the supremum norm and || || the Lebesgue integral norm.

20. Lemma. For every decomposable F and every e > 0 there exists an e-

decomposition of F.

Proof. (Sketch) Let F = U\ - U2 + S (£/,, U2 £ ßf, S absolutely continuous)
be any decomposition of F. If we change 5 by a suitable linear function

(which we add to Ui), we may assume S (a) = S(b) = 0. Since S is absolutely

continuous, 5" is Lebesgue integrable and to e > 0 we find a continuous g
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with ||5" - g\\ < e. If G is an indefinite integral of g, we may arrange it so

that G(a) = G(b) = 0. Thus, setting

GX:=UX + G,        G2:=U2,        H:=S-G,

we may assume that (ii) holds.

Now, if IF is a suitable, piecewise linear interpolation of G2 fulfilling

W(a) = G2(a), W(b) = G2(b), we can replace G2 be G2 - W and Gx by
Gx-W, hence verifying (i) and (iii).   □

Every decomposable function is continuous since absolutely continuous func-

tions and functions in ßif are continuous. We call F decomposable over

x £ [a, b], if there exists ô > 0, such that F is decomposable over [a, b]n

[x - ô, x + S]. Evidently, if F is decomposable over J , F is decomposable

over every compact subinterval of J.

21. Lemma. Let F: [a, b] —» R be a real function.

(i) If a < c < b and F is decomposable over [a, c] and [c, b], then F

is decomposable over [a, b].

(ii) If F is continuous and decomposable over every [a, ß] with a < ß < b

(over every [a, b]  with a < a < b), then F  is decomposable over

[a,b].
(iii) // F is decomposable over every x £ [a, b], then F is decomposable

over [a, b].

Proof. The assertions (i) and (iii) are more or less trivial.

To prove (ii), let F be decomposable over every [a, ß] with a < ß < b

and choose real /?,   (i = 0, 1, 2, ...) with

a = ß0 < ßx < ß2 < ■ ■ ■ ,        ßi]b.

By hypothesis, F is decomposable over every [/?,_i, /?,■]. For every i we find

a 1/2'-decomposition of F over [/?,-_i, /?,] :

F\[ßi-i, ßi] = Gu -G2i + Hi       (i = 0,l,2,...).

Let Gi : [a, b] —> R be the function with (7i|[/?,_i, /?,•] = Gn for i - 0, 1, 2, ...
(Gi(b) := F(b)) and define G2 and H analogously. Now it is not difficult to
verify that F — Gx - G2 + H is a decomposition of F over [a, b].   □

22. Lemma. Let F: [a, b] —► R be continuous with F (a) = F(b) — 0. Then
there exists a continuous, n.e. differentiable W: [a, b] —* R fulfilling

W>\F\,        11^00 = HFIloo,        W(a) = W(b) = 0.

Instead of the elementary proof we just say that a suitable, piecewise linear

W does what we want, if, perhaps, the (possibly countably many) points of

nondifferentiability of W accumulate in a or b. Now we are in the position

to prove our main result.

23. Theorem. A function F:[a,i]-»R is ACG on [a, b] if and only if F
is decomposable over [a, b].

Proof. Absolutely continuous functions and, by Theorem 18(i), members of ßff

are ACG on [¿z, b] and hence so is every decomposable F .
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The converse assertion is much more subtle. First, let F be ACG on [a, b]

and let
P := {x £ [a, b]\F is not decomposable over x).

It is obvious that P is closed. To see that P contains no isolated points,

assume that c £ P is such a point. Then there exists a suitable ô > 0 such that

F is decomposable over every x £ [c — ô, c + ô]\{c} . Lemma 21 (iii) yields

the decomposability of F over [c - ô, u] and [v , c + S] whenever we have

c-â<u<c<v < c + ô. Using (ii) and (i) of Lemma 21, we obtain the

decomposability of F over [c - ô, c + S], contradicting c £ P. Thus P is

closed and contains no isolated points.

By Lemma 21 (iii) it suffices to show P = 0, so we will disprove P ^ 0.

But, assuming P ^ 0, by a well-known theorem (cf. [3, Chapter VII, §9]) we

find a<ß in R, fulfilling (a, ß)C\P^0 and F is AC on (a, ß)nP. Since

P contains no isolated points and (a, ß) n P # 0 , we find ao, bo £ (a, ß) n P

such that F is AC on P0 := [ao > bo] n P and Pç> contains infinitely many
points. We shall show, that F is decomposable over [¿Zo, bo], because then

F would be decomposable over a point c £ (ao, bo) n P (which is nonvoid

since Pq contains infinitely many points), contradicting c £ P. Therefore, to

show that F is decomposable over [¿z0, bo] > let {-41^ =1,2,...} be the (at

most countable) family of closed intervals contiguous to Pq in [¿Zo, bo], i.e. the

closures of the components of [¿zo, bo]\Po ■ Define a function Fx on [¿zo, bo]

by
Fi:    fi'onPo

I. linearly interpolated on the Jk.

The latter means: If Jk = [ak, bk], the graph of Fx over Jk should connect

linearly the points (ak,F(ak)) and (bk,F(bk)). Using that F is AC on P0,
the reader should have no difficulties to check, that Fi is absolutely continuous

on the whole of [¿Zo, bo]. Therefore, if we could show that F := F — Fx is

decomposable over [¿zo, bo], so is F and the proof would be complete.

For this purpose, let us put together the properties of F . As a difference of

continuous functions, F itself is continuous. By construction, F|/b = 0. F is

decomposable over every Jk, as an easy argumentation (using Lemma 21 (iii)

and (ii)) shows. Hence F is also decomposable over every Jk , because on Jk it

differs from F only by a linear function. We thus find l/2fc-decompositions of

F\Jk; more explicitly, there exist G\ , Gj£ ß^(Tk) and absolutely continuous

Hk : Jk —► R, such that the following is satisfied (k = 1,2,...):

(i)   F\Jk = Gk-Gk2+Hk.

(ii)   Gk and Hk vanish at the endpoints of Jk (and hence, so does Gk by

(i) and since F\Pq = 0).

(iii)   \\(Hk)'\\ < 1/2*.

(iv)   Halloo, ||Gf||0O<2||F|7,|U.
Now define <7i : [¿zo, b0] —> R by

c  ._[G\   on each Jk

1 "~ I 0      on Po

and build G2, H analogously. From (iii) we conclude the absolute conti-

nuity of H (using Lebesgues dominated convergence theorem).   Considering
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(iv) and (ii), a straight-forward argumentation gives the continuity of Gi and

G2. By construction, we have F = Gi - G2 + H, but this is not yet the de-

sired decomposition. By Lemma 22, we find continuous, n.e. differentiable

Wk : Jk = [ak , bk] -» R, fulfilling

(I)   Wk(ak) = Wk(bk) = 0,

(II)   Wk>max{\Gk\,\Gk\},

(III)   ||^||oo = II max{|Gf |, I^DHoo   (<2||F|7,||0O by(iv)).

We construct W: [¿z0, bo] —► R by

Í Wk   on each Jk
W := <

I 0       on P0.

Again, W is continuous. Let Sx := Gx - W, S2 := G2 - W. By construction,

St is continuous, S¡ < 0 and S¡\Pq = 0 (í = 1,2). We shall show that

Si, S2 £ ^ ([ao, bo]) and thus F = Si-S2+H gives the desired decomposition

of F over [¿zo, bo]. So the only thing left to show is

D-Si = D+St £ R n.e.    on [a0, b0] (/ = 1, 2).

Since Sj\Jk = Gk - Wk £ %?(Jk) (because Wk is n.e. differentiable), we have

D-Sj = D+S¡ £ R n.e. on each Jk . But {Jk} is an at most countable family,
so it suffices to show

(') D-Si = D+Si £ R n.e.   on P0 (i = 1, 2).

But with Jk — [ak, bk], every x £ Po\{ak, bk\k = 0, 1, 2, ...} is a bilateral
accumulation point of Po . This, combined with S¡ < 0 and S¡\Pq = 0 forces

D-Si(x) = D+S¡(x) = 0       (i = l,2)

for our considered x, (') is shown and the proof is complete.   G

24. Corollary. The Denjoy integrable functions f: [a, b] —► R are exactly the

members of 5?d([a,b],e>d,Id) and the Denjoy integral coincides with the Id-
integral.

For convenience, let us only sketch the simple proof. Considering Corollary

16 and building indefinite /¿-integrals, we see that these are exactly functions

of the form F = G + H with G £ & and absolutely continuous H. So, by the

preceding theorem, these are exactly the functions which are ACG on [a, b],

i.e. indefinite Denjoy integrals. Therefore Theorem 18 and Lemma 7 yield

that -2^' consists exactly of the Denjoy integrable functions. In either case, the

integrals are given as the difference of the indefinite integrals evaluated at the

endpoints of the underlying interval, thus the equality of the integrals follows.

At last we shall show that S? and hence J% are not "too big."

25. Example. There exist absolutely continuous, nondecreasing functions

which are not in 3?.

Proof. By X we denote the Lebesgue measure on the real line. Let / = [0, 1 ]

and let N c J be an uncountable null set: X(N) = 0. We find open sets U„

with

Ui D U2 D C/3 D ■ ■ ■ , U„ D N,     X(U„)<-^¡       VíieN.
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Setting h := Y,T Xun, we have h > 0 and h is Lebesgue integrable. Thus

H(x):= [  h(t)dt       (x£[0, 1])
Jo

is absolutely continuous and nondecreasing. For arbitrary x £ N and «o £ N

we have

[x, x + ô] c U„0 c • • • c U2 c Ui

for a suitable ô > 0. Hence, for y £ (x, x + ö) we have

H(y) - H(x) 1      /* /A      , A   ,

and thus D+H(x) > no. Since «q G N was arbitrary D+H(x) = oo follows,

for x £ N. Assuming H £ &, we find //i , H2 £ ßf with H = Hx-H2. Since
N is uncountable, there must exist x £ N with D-H¡(x) = D+H¡(x) £ R

(i = 1, 2). For such an x we can estimate

-D+H2(x) = D+(-H2)(x) = D+(H - //,)(*)

>D+H(x) + D+(-Hi )(x)

= D+H(x)-D+Hi(x) = oo,

since D+H(x) = oo. But this contradicts D+H2(x) £ R and the assertion if

proved.   D
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