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REGULAR PI METRIC FLOWS ARE EQUICONTINUOUS
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(Communicated by James E. West)

Abstract. Let (X, T) be a metrizable minimal flow. We show that a homo-

morphism X —> Y , which is regular, and PI can be decomposed as X —>

Z —► Y , n = p o a , where p is proximal and it isa compact group exten-

sion. In particular, assuming further that T is abelian and taking Y to be the

trivial one point flow, we find that a metric regular PI flow is a compact group

rotation.

1. Introduction

By a theorem of W. H. Gottchalk [Go], a metrizable minimal distal regular
flow (X, T), where T is abelian, is necessarily a compact group rotation. This

was generalized by J. Auslander in [A] to a general group T and by the author

[GI], to point distal regular homomorphisms. Here we prove the following

theorem:

Theorem 1. Let (X, T) be a metric minimal flow, X AL, y a regular PI ho-

momorphism. Then n = p o v , where X -^> Z is a group homomorphism and

Z -£+ Y is proximal. If in addition, n is RIC, then n is a group homomorphism.

Taking Y as the trivial flow, we get

Corollary 1. If (X, T) is a minimal regular PI metric flow, then (X, T) is a

group extension of a proximal flow. If (X, T) is incontractible (as is always the
case when T is abelian), then (X, T) is a compact group rotation.

Theorem 4.7 of [GI], which concerns point distal regular open homomor-

phisms, is a corollary of Theorem 1. (Although in the proof of Theorem 1 we

use Proposition 3.1 of [GI], which is about a distal regular homomorphism be-

ing a group homomorphism.) However, Theorem 4.5 of [GI], which states that

a nontrivial factor of almost simple flow is up to almost 1-1 extension a group

homomorphism, cannot be deduced from Theorem 1 because it is not known

whether an almost simple flow is almost 1-1 equivalent to a metrizable regular

flow.
Examples of regular PI (nonmetrizable) flows that are not equicontinuous are

easy to find. One is the enveloping semigroup of the flow on the 2-torus K2/Z2
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given by T(x, y) = (x + a, x + y) [F, N]; another is the "two circle" minimal

set [E].
In §2 we briefly review the various definitions of the notions mentioned above

and describe the algebraic notations and techniques that are used in proving

Theorem 1. We also prove some basic lemmas including the crucial Lemma 3

on the topological isomorphism of certain automorphism groups. Surprisingly,

the proof of this lemma requires theorems of Souslin and Banach about mea-

surable maps. Section 3 is devoted to the proof of Theorem 2, which asserts the

regularity of each of the components of the canonical Pi-tower corresponding

to a regular homomorphism X -^+ Y over the base Y.

The last section uses Theorem 2 to reduce the proof of Theorem 1 to the

case of a regular distal homomorphism, which by [GI], is necessarily a group

homomorphism. Using essentially the same proof, we get Theorem 3, which

says that when X is metric and X -ï» Y is RIC and regular, then n = k o to,

X -^ Z —•* Y, where Z -^+ Y is the largest almost periodic extension (actually

a group extension) of Y under n , and x -^ Z is RIC and weakly mixing.

2. Definitions, a review of some theorems, and some basic lemmas

We refer to [E, V, A, G2] for more details on the algebraic theory of minimal

flows; we now describe some of its aspects. Assume T to be a discrete group,

and as usual, let ß T denote the Stone-Cech compactification of T. Let M

be a fixed minimal ideal in ßT and J c M the set of idempotents in M. We

fix an element u £ J, and let G be the group uM.

ß T acts on every flow (X, T) and the orbit closure of a point x £ X is

given by o~(x) = {px: p £ ßT}. A point x £ X is almost periodic (a.p.) if

o~(x) is minimal, iff o~(x) = {px: p £ M}.
A flow (X, T) satisfies the Bronstein condition (B.c.) if the a.p. points are

dense in X. Given X AL, y ,a homomorphism of minimal flows, we let

Rn = {(x, x') £ X x X: n(x) = n(x')} .

The homomorphism n satisfies Be if R„ is a Be flow. Let Yn = {y/ £

Aut(X, T): n o ip = n}.

Here Aut(X, T) is the group of all self-homeomorphisms of X such that
y/ot = toy/Vt£T.

We provide Aut(X, T) with the topology of uniform convergence of ho-

momorphisms and their inverses. When X is metric, Aut(X, T) is a polish

topological group.

A pointed flow is a flow (X, T) with a distinguished base point Xo £ X. We

adopt the convention of always choosing a base point Xo satisfying uxq = Xo .

When (X, Xq) is a pointed flow its Ellis group is the subgroup S?(X) =

S?iX, Xo) = {a £ G: axo = Xn} of G.

A homomorphism (X, xo) -^* (Y, yo) (this means zixn = yo) is proximal

(i.e. nx = nx' => x and x' are proximal) iff W(X, xn) = &(Y, yo) ■

For the definition of the r-topology on G, we refer to e.g. [G2]. If F is a

T-closed subgroup of G, then

F' = p|{T - clr(O) : O is a t - nbd of u in F} .

F' is a T-closed subgroup of F, which is invariant under all r-continuous

automorphisms of F ; in particular F' <F, F" <F etc. F/F' with the quo-
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tient T-topology is a compact Hausdorff topological group. A homomorphism

(X, xo) -^* (Y, yo)  of minimal flows is almost periodic iff it is distal (i.e.

nx = nx',  x 9¿ x' =>■ x, and x'  are not proximal) and F' c A, where

A = S?(X, Xo), F = S?(Y, yo) ■ An almost periodic homomorphism is a group

homomorphism if in addition A < F, and in that case, the topological groups

Yn and F/A are isomorphic and (Y, T) = (X/Yn , T).
A quasifactor of.a minimal flow (X, T) is a minimal subflow of the flow

(2X, T) induced on the space 2X of closed subsets of X by T. For p £ ßT,

K £ 2X the action of p on K is written as p o K. This is to distinguish it

from the subset pK = {px: x £ K} of X, which is usually not even closed.

We have, however, pK c p o K . Given a homomorphism (X, Xo) -^» (Y, yo)

of minimal sets with S?(X, xq) = A c F = 2?(Y, y0), we let Y = {poFxo: p e
M} . This is a quasifactor of X, and we say that n is a RIC-homomorphism

(or extension) if the sets p o Fxo are exactly the fibers of the map n ; i.e.

n~x(pyo) = p o FxoVp eM.  In any case 6: p o Fxo >-* pyo   (p € M) is a

homomorphism of Y onto Y, and it is an isomorphism iff n is RIC. A RIC

homomorphism is open and satisfies Be. Let y~o = u o Fxo be the base point

of Y, and let X = X V Y = ô(x0, y0) c X x Y. Then X = {(x, y): x £ y} =

{(pxo, p o Fxn) : p e A/} . If we let 6(x, y) = y and rè(x, y) = x , then in the

shadow diagram
d

X i- X

■i    y

the maps 6, 6 are proximal and zr is RIC. When X -£» T is RIC, a commu-

tative diagram

"1    z
//»

y
can be constructed such that p is almost periodic and S?(Z , zq) = F'A .

The latter condition means that Z is the largest almost periodic extension of

Y that is a factor of X. In particular, when X is metric, n is weakly mixing

(i.e. Rn is topologically ergodic) iff p is trivial.

The construction of the shadow diagram producing RIC-homomorphisms

and the construction of the maximal almost periodic extension within a RIC-

homomorphism are the basic blocks of the canonical Pi-tower associated with

a homomorphism X AL,y   Thus the first stage of this tower is the diagram
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where Yy-Y, Xx = X, and Zx -
of Y\ under the RIC extension ñ

l+ Ti is the largest almost periodic extension

The next stage is the diagram

where 7ii is the RIC shadow of n{ and p2 the largest almost periodic extension

of Y2 under ñ\ etc.
If necessary, one utilizes inverse limits to construct inductively flows {Yv ,

Z„ , Xv : v < n} , where n is the first nonlimit ordinal for which Zn = Yn. The

top of the tower consists of the flows X^ = X„, Tœ = Y„ = Z„, where the

diagram

X Xn

■I        I"

is achieved. Here n^ is RIC and weakly mixing, 7^ —> Y is a strictly PI

homomorphism (i.e. can be decomposed into possibly transfinite sequence of

alternating proximal and a.p. homomorphism), and z is a proximal extension.

When X is metrizable, each flow in the Pi-tower is metrizable and the ordinal

n is countable.

We say that n is a PI homomorphism if n^ is an isomorphism. Though

we are not going to use it, we mention the following characterization of PI

homomorphism due to I. U. Bronstein (see [A]). When X is metric, X -^+ Y

is PI iff every closed invariant subset of R„ that is both topologically ergodic

and satisfies Be is minimal.

A homomorphism X —-» y 0f minimal flows is called regular if whenever

(x, x') £ Rn is an a.p. point, there exists an automorphism y/ £Yn with x' =

y/(x). X is called regular if this condition holds for every a.p. (x, x') £ XxX.

Lemma 1. Let (X, xo) -^* (Y, yo) be a regular homomorphism of minimal

flows. Let A = ê?(X, Xo), F = S?(Y, yo), then A < F and there exists a
natural algebraic homomorphism y -* t/r7 of F onto Tn with kernel A. Thus

r„ is algebraically isomorphic to F /A.

Proof. Let y £ F ; then (xn, yxo) is an almost periodic point in Rn . By the

regularity of zr, 3y/Y £ T„ for which ^~'(xo) = yxo . For p e M we have

Wy '(pxo) =pw '(x0) = pyxo.

If ô  £  F, then   ip s

(Vy° Vô)~l(pxt)) and y

'(pxo)  = pyôxo Vô l(Pyxo) = Vs ' ° Vy l(Pxo) =

y/y is a homomorphism. Clearly the kernel of this

homomorphism is A. Finally if y/ £ Yn then uip(xo) = i^(zzxo) = iff(xo),

and therefore, tyz(xo) = y~'xo for some y £ G. Since y~xyo = y~xn(xo) =

n(y~xx0) = n o ^z(xo) = zr(xo) = yo, we have y £ F and y/ = y/y.   U
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Lemma 2. In the diagram

X

n\ Z

Y

let p be proximal. Then Yn = Ya .

Proof. Suppose y/ £ Ya i.e. o o y/ = a . Then noy/ = poooyi — poa — n

and y/ £ Yn . Thus Ya c Yn . On the other hand, if y/ £Yn , then for x £ X,
p(o(y/(x))) = n o y/(x) = nx = p(ox), and we conclude that o(y/(x)) and

o(x) are proximal. However, (x, y/(x)) is an a.p. point and therefore, so is

(ax, o(y/(x))). This can happen only when ox = o(y/x), and since x is an

arbitrary point of X, we have o = o o y/, so that y/ £Ya and YncYa .   □

Lemma 3. In the diagram

suppose n and p are regular, o is proximal, and X is metrizable. Then Yn

and Yp are topologically isomorphic.

Proof. Since o is proximal %?(X, xq) = ê?(Z, zq) = A. Thus by Lemma

1, r„ , Yp, and F /A where F = ë?(Y, yo), are all algebraically isomorphic.

Moreover, it is clear that the canonical isomorphism / : Yn —» Yp is continuous.

Since Yn and Yp are polish groups and J is 1-1, by a theorem of Souslin [K,

Vol. I, p. 487], 7 is a Borel isomorphism. In particular, J~x: Yp -* YK is a

Borel measurable homomorphism of polish groups. By a theorem of Banach [B],

such a homomorphism is continuous, and we conclude that / is a topological

isomorphism as claimed.   D

3. The PI-tower for a regular homomorphism

Theorem 2. Let X AL, y De a regular homomorphism of minimal flows; then

each of the homomorphisms onto Y of the flows Xv , Yv, Z„ (v < n) con-

structed in the canonical PI-tower for n is regular.

The proof is a consequence of the following three lemmas.

Lemma 4. Let

X

X

4 z
/p

Y
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be a diagram where n and p are regular, and let

be the same diagram with the attached RIC shadow diagram for n . Then the

maps ñ and p are regular.

Proof. Denote A = S?(X, x0), F = S?(Y,y0), and B = 5?(Z, z0), then

Lemma 1 implies A<F and B<F . We recall the definitions Z = {poBxo: p £

M} , ¿o = u o Bxo , and X - {p(xo, u o Bxq): p £ M} = {(x, z): x £ z £ Z} .

Given y/ £ Yn , we define a map XP: Z —► 2X by vP(p o Bxo) :— y/(P ° Bxq) =

p o By/xo . If ip(xo) = yxo for y £ G, then

yy0 = yn(xo) = n(yx0) = no y/(x0) = n(x0) = y0

so that y £ F . Now ^(p o Bxo) = P ° By/(x0) = p o yBx0 = py o Bxo £ Z ,

and *F maps Z into itself. Moreover, if also ^(xo) = ¿xo for ô £ F, then

yxo = ¿Xo implies y~xô £ A c B and SB = yB . Thus for every p £ M,

py o ßxo = p o yßxo = p o r55x0 = pâ o Bxo,

and ^P is well defined. It is also clear now that *P is a continuous automorphism

of (Z , T) where the inverse XP~1 is induced by y/~x . We now define a map

y/:XxZ^XxZ by y/(x, z) = (y/(x), ^(z)). Since for p £ M

y/(p(x0, z0)) =p(y/(x0), *¥(uoBxo)) =p(yx0, yoBx0) = py(x0z0) £X,

we see that y/ is an automorphism of (X, T).

Now let  ((x, z),   (x', z'))  be an a.p. point of Rn .   Then there exist an

idempotent v £ J and S, Ç £ G such that

(x, z) = vÇ(x0, ¿o),        (x', z') = vô(x0, ¿o) .

Clearly Çyo = ôyo and therefore, Ç~xô £ F. Now (x, x') is an a.p. point

of Rn and by regularity of n, a ^ £ Yn exists for which x' = i//(x). Let

£, £ F be such that y/(xo) = <^xo ; then *P(wÇ o 5xo) = vÇÇ o Bxo and «¿xo =

x' = y/(x) = y/(v!^xo) - vC,y/(xo) = 'wÇ^xo, implies ô~xÇc; £ A c B. Thus

á_1C^ o ßx0 = u o Bxo , hence Ç£ o 5xo = ô o Bx0 and *P(z) = y/(vÇ o Bx0) -

vÇc;oBxo = vöoBxo = z'. It follows that y/(x, z) = (x', z') and zt is regular.

Finally if (z, z') = («C^o, fazo) is an a.p. point in R-p, then ((x, z),

(x', z')) = ((îzC-^o , vÇzo), (vôxo, vo¿o)) is an a.p. point in jRä and z' = *P(z)

where *P e T^ is constructed as above. This proves that also p is regular.   D
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Lemma 5. In the diagram
X

n\ Z

suppose p is regular and o is distal. If S?(X, xo) = A < F = %?( Y, yo), then n
is regular

Proof. Given y £ F, by Lemma 1 there exists an automorphism y/y £ Yp

defined by y/y(pzo) — pyzo (p £ M). Define y/y £ Yn by y/y(pxo) = pyzo.

We first show that yiy is well defined on X. Suppose pxo = qxo , p, q £ M.

Then a fortiori pzo = qzo and y/y(pz0) = pyz0, y/y(qz0) = qyz0 implies

pyzo - qyzo . Hence

a(qyxo) = qytr(xo) = qyz0 = pyz0 = pyo(x0) = tJ(pyx0).

If v £ J satisfies vp = p, then

vo(pyxo) = vpyzo = pyz0 = cr(pyx0),

and the distality of a implies vqyxo — qyxo as well.
Denote a = (up)~l(uq), then a £ A . Since A<F, y A = Ay, and there exists

a' £ A with ya' - ay. Thus pyxo = vpya'xo = v(up)ayxo = v(uq)yxo =

qyxo and y/y is well defined on X. It is clearly an element of Y„, and if

(vCxo, vÇxo) is an a.p. point of RM, then y = Ç,~x£, £ F and ^(^Cxo) =

vÇyxo = vÇxo so that n is regular.   D

Lemma 6. // (X„, xv) -^+ (Y, yo) is an inverse system of regular homomor-

phisms of pointed minimal flows, then lim Xv = X -^-> Y is also regular.

Proof. If y £ F = S?(Y, y0), then by Lemma 1 y/y(pxv) = pyxv (p £ M)
defines an automorphism on each Xv . This and the definition of the inverse

limit automatically define y/y on X as well. If (x, x') 6 Rn is an almost

periodic point, then for some v £ J, Ç, £, £ F, x = vÇxo, x' = v£xo

where xo £ X is the point corresponding to the points x„ £ Xu . If we let

y = C~xc; £ F , then clearly y/y(x) = x'.   D

The proof of Theorem 2 follows by transfinite induction on the canonical

PI-tower for X -^* Y, using Lemmas 4, 5, and 6. For the use of Lemma 5,

we recall that F" <F for all v , where Fv+X = (Fv)', and that therefore, also

S?(Z„, zv) = F"A<F.    D

4. A proof of Theorem 1

We are given a metric minimal flow X and a regular PI homomorphism

X AL, y _ Thus in the canonical PI-tower for n, Xx = Y^ . In the notations

of §2, consider the chain

Z2 -£♦ Y2 -^ Z, -2U Yx JU y.

We have &(Y) = &{Yf) = F, &(ZX) = %(Y2) = F'A, and 5?(Z2) = F"A,
where by Lemma 1, 9(X) — A<F .



276 ELI GLASNER

Let 6 = 6iopxo62 and p = 6iopx . By Theorem 2, p and 0 are regular, and

by Lemma 3, Yp and Yg are topologically isomorphic. By Lemma 2, Yp = YPl .

Now since A<F , F'A<F , the homomorphism pi is a group homomorphism.

Thus the topological group YPl is a compact group (topologically isomorphic

to the compact Hausdorff topological group F/F'A with its r-topology). We

also conclude that Yg is a compact group. Let W be the quotient flow Y2/Yg

and let

72 x
"\2

e\      W

St
Y

be the associated diagram. %?(W) c F and since every y £ F defines an

element y/y £ Ye , we also have F c %(W). Thus 9(W) = F = S?(Y) and A,
is proximal. We now have the alternative chain

Z2 -£-, y2 -A» W -A» y ;

where p2 and A2 are group extensions and k\ is proximal. Put zci =X\oX2op2

and k2 = á2 o p2 . Then k2 is a distal homomorphism.

If (x, x') is an a.p. point in RKl c RK¡ then by regularity of zci (Theorem 2)

3y/ £ YK¡ with x' = ^(x). However, by Lemma 2, YK2 — YK¡ so that y/ £ YK2

and we conclude that k2 is also regular. It follows from [GI, Proposition 3.1]

that Z2 -^ W is almost periodic, and since S?(Z2) = F'M, ^(H/) = F, this

implies F' c F'M . Since 9(Yf) = F'A , we now have S"(Z2) = F"^ = F'A =
&(Y2), whence T2 = Z2 = Too = X» . Thus our PI-tower is of height two and

we have the following diagram

X    -A    Y2

■I«        2^     U.

y   <—   it7

A,

where z is proximal. Apply Lemma 3 again to the diagram

X   -U    Y2•I
r

to get the topological isomorphism of the compact Ye with YM . Thus Yn is

also compact and denoting the quotient flow X/Yn by L and the quotient map

X —* L by v . We find that the map L AU Y is proximal.
Thus n = pop is the required decomposition. It is easy to check that when n

is RIC p must be trivial and n = v is a group homomorphism. This completes

the proof of Theorem 1.    D

Theorem 3. Let (X, T) be a metrizable minimal flow and X AL, y a regular

RIC homomorphism. Let X A0+ z -^+ Y, n = k o a>, where Z is the largest

equicontinuous extension of Y under n. Then œ is RIC and weakly mixing,

and k  is a group homomorphism.   In particular, when X is regular and T
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abelian, the homomorphism X -^ Z of X onto its largest equicontinuous factor

is RIC and weakly mixing and Z is a compact group rotation.

Proof. Repeating the proof of Theorem 1 without the assumption X^ = Y^ ,

we arrive at the diagram

X <- Aqo = X V im-1
y    <_H/^    Z2 = Y2 = YO0

where k\ is proximal, X2 a group homomorphism, and ñ RIC and weakly

mixing. From the simple structure of Too over Y we immediately deduce (in

the notation of the canonical tower of §2) that W = Y\ = Y and Z2 = Z\ .

However, the assumption that n is RIC means that Y = Y = W, and therefore,

Z — Z2 is the largest almost periodic extension of Y that is a factor of X.

Hence X00 = XVY00 = XVZ=X. Put <y = £ and K = X2 to get the

decomposition n = k o a>.   D
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