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A TRANSFER THEOREM FOR NONSTANDARD UNISERIALS

PAUL C. EKLOF

(Communicated by Louis J. Ratliff, Jr.)

Abstract. A general theorem is described and proved which allows the transfer

of results about the existence of nonstandard uniserial modules over a valuation

domain from models of ZFC + 0 to all models of ZFC.

An /î-module M is called uniserial if its submodules form a chain under

inclusion. A ring R is called a valuation ring if it is a commutative ring with
1, which is uniserial as a module over itself; R is a valuation domain if it is

also an integral domain. If R is a valuation domain, the canonical examples of

uniserial /(-modules are those of the form /// where / ç J are /?-submodules
of Q, the quotient field of R ; these are the standard uniserial /î-modules.

For a long time it was unknown whether there were nonstandard uniserial

modules. Their existence was first established by Shelah [Sh2], who forced to

obtain a particular model of ZFC (ordinary, Zermelo-Frankel, set theory with

the axiom of choice) containing a model of arithmetic with appropriate proper-

ties that allowed one to construct a divisible nonstandard uniserial module; he
then used a model-theoretic absoluteness argument (based on the completeness

theorem for stationary logic) to show that a suitable model of arithmetic existed
in any model of ZFC, and hence that it was a theorem of ZFC that there were

divisible nonstandard uniserial modules.

Immediately afterwards, Fuchs and Salce [FS] constructed a divisible non-

standard uniserial module using 0 (a combinatorial principle that is consistent

with, but independent of, ZFC). In [FSh], this construction plus a different

model-theoretic absoluteness argument (based on [Shi]) is used to show that it

is a theorem of ZFC that there are divisible nonstandard uniserials.

Recently a great deal of work has been done, notably by Bazzoni and Salce,

on properties which differentiate nonstandard uniserials. In [BS1] are defined
six different classes of nonstandard uniserial modules, distinguished by which

homomorphic images of the module are nonstandard. On the one extreme are
the strongly nonstandard ones for which all nonzero quotients are nonstandard.

(These actually form two classes, depending on whether the modules are divis-
ible or bounded.)  At the other extreme are the barely nonstandard ones for
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which all proper quotients are standard. Bazzoni and Salce prove (using <C> )

that it is consistent with ZFC that each of these classes is nonempty (for some

valuation domain).

It is a natural question—in fact, posed by Salce to the author—whether it is

provable in ZFC that these six classes are nonempty. Bazzoni and Salce have

done other work which raises similar questions (cf. [BS2] and [BS3]). Thus it

seems desirable to have a general tool that would allow one to transfer results

about the existence of nonstandard uniserials proved using 0 to the same results

proved in ZFC. The purpose of this note is to observe that such a result can be

derived from the method of proof used in the Fuchs-Shelah paper:

Transfer Theorem. Let tp0, ... , tpm be sentences of the first-order two-sorted

language of R-modules such that it is provable from ZFC + <0> that there is a

valuation domain R and nonstandard uniserial R-modules Uo, ... , Um so that

tpi is true in U¡. Then it is provable from ZFC that there is a valuation domain

R' and nonstandard uniserial R'-modules U¿, ... , U'm so that tpt is true in

ui-

The two-sorted language referred to in the statement of the theorem is a

natural language in which to speak about modules over a ring and one powerful

enough to express many, if not all, of the properties of uniserial modules which

have been studied. The first section is devoted to explaining this language and

its applications—hopefully in such a way that the Transfer Theorem can be

employed by an algebraist not versed in logic. Among the consequences of the

Transfer Theorem discussed in the first section, is the following weak version

which is sufficient for some uses. (For the notation, see §1.)

Corollary 1. Let tpo, ... , tpm be Boolean combinations of statements of the form
X C Y, where X and Y are 0, U, Uc, Uc, or U[P] (subsets of U) or X

and Y areO, R, P, U*, U#, Ann(U), Ann(U/Uc) or Ann(U/Uc) (subsets
of R). Suppose that it is provable from ZFC + 0 that there is a valuation

domain R and nonstandard uniserial R-modules Uq, ... ,Um so that tp¡ is

true in U¡. Then it is provable from ZFC that there is a valuation domain R'

and nonstandard uniserial R'-modules U¿, ... , U'm so that tpi is true in U[.

Here, a Boolean combination of statements means a conjunction of disjunc-

tions of the statements or their negations. Using Corollary 1 we derive in § 1

the following, answering Salce's question.

Corollary 2. It is provable in ZFC that there exist nonstandard uniserials in each

of the six classes described in [BS1].

A uniserial module is said to have principal annihilators if the annihilator of

one (hence every) nonzero element is a principal ideal. This is not expressible

by a Boolean combination of statements as in Corollary 1, but we show in § 1

that it is expressible by a sentence of the two-sorted language. Thus, as another

application of the Transfer Theorem we get the following.

Corollary 3. If it is provable from ZFC + 0 that there exists a nonstandard

uniserial module with principal annihilators (respectively, without principal an-

nihilators) satisfying a Boolean combination tp of statements as in Corollary

1, then it is provable in ZFC that there is a nonstandard uniserial satisfying
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tp which has principal annihilators (respectively, which does not have principal

annihilators).

By applying Corollary 3 to a consistency result from [BS2] we get another

result about the existence of a certain type of nonstandard uniserial:

Corollary 4. It is provable in ZFC that there exists a (barely nonstandard) unis-

erial of type J /A where A is archimedean, not principal, and not isomorphic to

P.

The Transfer Theorem and Corollaries 1 and 3 also apply when ZFC + 0 is

placed by many other axiomatic extensions of ZFC; see Remark 1 in §2.

The first section does not presume a knowledge of [FSh]. The second section,

which proves the Transfer Theorem, does assume familiarity with [FSh]; it also

discusses some strengthenings of the Transfer Theorem.

1. The two-sorted language

To begin, let R be an arbitrary ring with 1. We will describe a precise sym-

bolic language in which to express properties of .R-modules, including properties

of the ring R. (See [Ba, p. 42] or [Fe] for more on many-sorted languages.)
We will use two sorts of variables, one for elements of the ring and one for

elements of the module. Elements of the ring will always be denoted by lower

case Greek letters: p, a, x, ... . (We will reserve the letters y/ and tp for

formulas.) Elements of the module will be denoted by lower case Latin letters:

u, v ,w , ... . We will have three constant symbols: 0 for the zero element of

the module; 6 for the zero element of the ring; and 1 for the multiplicative

identity of the ring. The basic building blocks, the atomic formulas, will be

those of the form

f(\, pi, ... , pn) = e

where f(Xo, X\, ... , Xn) is a polynomial with coefficients in Z, or of the

form

i<n

where each t¡ is of the form f(l, p\, ... , p„) where f is a polynomial as

above.
The formulas of our language are those obtained from the atomic formulas by

a finite number of applications of the following rule: if tp and y/ are formulas,

then so are (tp A y/), (tp V yi), (tp —► y/), (-<<p), Vptp, Vutp , 3ptp , and 3utp .

(Here p stands for any variable of the ring sort and u for any variable of the
module sort.) An occurrence of a variable p (respectively, u) in a formula tp

is called free if it is not within the scope of a quantifier Vp or 3p (respectively,

Vm or 3m) . A formula without any free occurrences of variables is called a

sentence.

Given a ring R and an /î-module U, there is a natural sense in which a

given sentence tp expresses properties of U and/or R (which may or may

not be true). We write rU \= tp or just U \= tp to mean that tp is true in

the /î-module U. (In this case, we also say U satisfies tp.) Rather than give

the formal definition, we will illustrate it with some examples. Notice first that

whether or not r U satisfies tp may depend (wholly) on properties of the ring

R. For example, if tp is the sentence VpVrj(p(7 = op)), then rU (= tp if and
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only if R is a commutative ring. (In this case, tp is true in one /?-module U

if and only if it is true in all .R-modules if and only if R is commutative.)

If q>\ is the sentence VwVu3t(t« = v V tv — u), then U \= tp\ if and only if

U is a uniserial module. If tp2 is the sentence

VpVrj(p<7 = 6 -¥ (p = 0 V a = 0)) A V«Vp(p ̂  0 -» (3tZ pv = I/)),

then U \= tp2 if and only if R has no zero-divisors and U is a divisible /?-

module, (p ^ 6 is an abbreviation for -.(p = 0).)

For definiteness, we will assume from now on that R is a valuation domain.

An /î-module U is a torsion module if and only if it satisfies the sentence

Vt>3o-(o- / 0 A au = 0).

If ^ is a formula with one variable which occurs free, then there is a natural

sense in which, in a given /î-module U, y/ defines a subset of R (if the

free variable is of the ring sort) or of U (if the free variable is of the module
sort). Again, we will illustrate with some examples. (The free occurrences of

the variable are underlined.) If y/ is the formula -i3<r(crp = l),then y/ defines

the maximal ideal P in R. If y/\ is the formula 3uVv(^(pv = u)), then, for

a given /î-module U, y/\ defines the prime ideal

U* = {r £ R : rU < U}

of R associated with U (cf. [FS, p. 34]). Similarly, the formula y/2 :

3u(u ^ 0 Apzz = 0)

defines the prime ideal U# = {r £ R : ru = 0 for some 0 ^ u £ U}. Thus U

is torsion-free if and only if U satisfies the sentence

Vp(yv2(p) - p = 0).

The annihilator of U, Ann( U), is defined by the formula y/3 :

Vu(pu = 0).

We can use these formulas to define others. Thus if y/4 is the formula

Vp(Vi(p) —PH = 0)

then y/4 defines the upper threshold submodule

Uc = {a £ U : ra = 0 for all r £ U*}

of U (cf. [BS1, p. 297]). Similarly, but using a more informal notation, the

formula y/$, 3p(->(p € U*) Apu = 0) defines the lower threshold submodule

Uc. Moreover, Ann(U/Uc) is defined by Vuy/^pu).

Using these formulas we can easily express statements of the form X ç

Y—as in Corollary 1—in the two-sorted language. For example, Uc ç Uc is

expressed by the sentence Vu(y/4(u) -+ ips(u)). Also, U# ç U* is expressed

by the sentence Vp(y/2(p) —> y/\(p)). Then Corollary 1 follows easily from the

Transfer Theorem. Moreover, Corollary 2 follows from Corollary 1 since the

six classes of [BS1 ] can be defined in terms of such Boolean combinations (cf.

[BS2]). For example, the class of strongly nonstandard bounded uniserials {^¿2

of [BS2]) is defined (among nonstandard uniserials) by

-■(t/# Ç U*) A ->(V* Q Ann(U)) A -.(Ann(C/) C 0).
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Note that we cannot say in our two-sorted language that U is a nonstandard
uniserial. Indeed for any sentence tp of the language, if tp is true in some

uniserial module, then by the downward Löwenheim-Skolem theorem, there is

a countable uniserial U (with countable R) such that tp is true in U (cf. [Ba,
p. 10]). But then U is a standard uniserial by [FS, p. 142].

We conclude this section by discussing some other properties of uniserial

modules which arise in [BS2] and [BS3] and which involve the nature of the

type, J/A, of U. ( U is said to have type J/A if there exists 0/ne U,
such that Ann(w) = A and u is divisible by precisely the elements r, such that

r~x £ J.) Here we must take a more indirect approach. (See also Remark 3

of §2.) To say that U has type J/R for some J means that the annihilator

of each nonzero element of U is principal; that is, U satisfies the sentence
tp$ : Vw3pVrj((7zz = 0 <—► (3t xp = a)). Then U does not have principal

annihilators if and only if U \= -*tp?,. Corollary 3 follows easily from the

Transfer Theorem.

To say that U is of type J/A where A is archimedean (i.e. A* = P) means
that U satisfies the sentence Vp(y/(p) —> y/2(p)) We can also express this by

saying U# = P. To say that U is of type J/A where A is isomorphic to P

means that U satisfies the sentence

3«3pVo-(CTM = 0 <—► 3t(t £ P A cr = pi)).

Now Corollary 4 follows directly from Corollary 3 (or from the Transfer

Theorem) and the fact, proved in [BS2], that it is a consequence of ZFC + <0>

that there exists a barely nonstandard uniserial module U which does not have

principal annihilators and satisfies U# = P.

2. Proof of the Transfer Theorem

We begin with the case m = 0 of the theorem. As in [FSh], we consider a

class of multisorted models, but since we do not want to confine ourselves to

divisible torsion uniserials, we need a more complicated class. Let 3£' be the

class of multisorted models

N = (LN, RN, QN, UN, U#N,R»,AN, JN,TN,fN, gN)

where LN, RN, QN are as in [FSh, p. 27], UN is a uniserial /^-module, Ujf

is the prime ideal defined by y/2, and R# C QN is Ä?L, i.e.   RN localized

at U# . We require also that (UN)* C U^ , so that UN is canonically an R%-

module; in what follows we will view it as such. (We do not want to assume

that RN = R# since this property is expressible in the two-sorted language.) In
addition:

(a) JN is an /î^-submodule of QN containing R% ; AN is an ideal of

Rf , or AN = RN ;
(b) /*: LN ^R»\ {0} such that:

(a)   s <t in LN implies that fN(s) divides fN(t) in R% ; and

iß')   for all r £ R% , r~x £ JN if and only if there exists s £ LN such

that r divides fN(s);
(c) gN:LN ^UN suchthat:

(y)   s<t in LN implies that gN(s)R% ç gN(t)R$ in UN ;

(Ô')   for each s £ LN , Annig1*is)) = fN(s)AN ;
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(e)   for ail u £ UN, there is s £ LN such that u £ gN(s)R% ;

(d)  TN is a tree, as in [FSh, p. 28] except that T? is defined to be the set
of all isomorphisms

<Pf.fIf(t)-llt$/4N-*gN(t)R$.

More precisely this means: the element tpt of TtN is identified with the unit

ct of R# so that tf>t(fN(t)~x) = gN(t)ct. (This gives an isomorphism by

(Ô').) If s < t, then cf>s is defined to be < <pt if and only if gN(s)cs =
(fN(t)fN(s)-x)gN(t)ct (i.e., tps is the restriction of tpt).

With this understanding, one can easily check that 3lf is the class of models

of a first order theory P . Then, the key lemma is:

Lemma. For N £ 3ÍÍ', UN is standard if and only if TN has a full branch.

Proof. Note that UN is standard as /î^-module if and only if it is standard as

.R^-module. If UN is standard, then since UN has type JN/AN, there is an

isomorphism

tp: JN/AN — UN.

For each t £ LN the image of fN(t)~xR^/AN under tp must be gN(t)R% (by

(<?') and using the fact that (UN)#R% = the maximal ideal of R% = (AN)*).

If for each t £ LN we let <f>, be tp \ fN(t)~xR%/AN, then {tpt : t £ LN} is a

full branch of TN.
Conversely, if B is a full branch of TN, then

\J{tf>, : {<pt} = Bn 7f}

is an isomorphism of JN/AN with UN.   D

Now suppose that we are given a sentence, tpo, of the two-sorted language

of modules. Then tpo may be translated directly into a sentence, $>o > of the

language of the models in 3?' so that a member N of 3¡f' satisfies <p~o if and

only if the /v^-module UN satisfies tpo . Suppose that it is consistent that there

is a nonstandard uniserial /v-module U in which tpo is true. Regard U as an

Rut-module. By [BS1, Lemma 1.2] or [FS, Lemma VII. 1.2], U is, without loss
of generality, the direct limit of submodules r~xRut/A (o < zc) of Q where

the connecting homomorphisms nxa:r~xRVtl/A —► r~xRu§/A (a < x < k) are

given by multiplications by units of R^ . We let LN be k , RN be R, UN be

U, R% be Ru§, AN be A, JN be \Ja<K r"1/?^ , and for all o £ LN, define

fN(o) to be ra and gN(o) to be the canonical image of r~x + A in the direct

limit. In this way we obtain a model N of F U {^o} . which does not have a

full branch by the lemma, since U is nonstandard.

The proof is now finished as in [FSh]. Let *P be

{-i(3y)^(y) : (¡>(x, y) is a first-order formula in the language of 3t'}.

Thus *F says that no first-order formula defines a full branch of TN. By

hypothesis and the lemma, it is true in an extension, V , of the universe, V,

(namely a generic extension in which <C> is true) that

r+d=Fu{i9o}u^

has a model. Thus there is no proof from Y+ of an inconsistency in V and

hence none in V—since V D V -. Then by Gödel's completeness theorem and
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Theorem 12 of [Shi], it is provable in ZFC that Y+ has a model N' such that

TN has no full branches (except for definable ones, which are excluded by the

definition of 4'). If we let R' = RN and U¿ = UN', then we have obtained in
ZFC a nonstandard uniserial in which tpo is true.

For the general case m > 0, we need only to consider models of the form

N = (L?,R\Q\U?,U#Nj,Rlj,A?,JJN,TJN,f»,g»:j<m)

and sentences tp"j in the language of these models which say that the /{^-module

Uf satisfies tp¡.

Remarks. ( 1 ) By the same kind of argument, one can replace in the Transfer

Theorem "provable from ZFC + 0," by "provable from ZFC + V = L" or
"provable in a forcing extension of the universe."

(2) By similar means one can show that if it is consistent with ZFC that there

are k different (nonisomorphic) nonstandard Ä-uniserials satisfying a given tp ,

then it is provable in ZFC that there is a valuation domain R' such that there
are k different (nonisomorphic) nonstandard R'-uniserials satisfying tp. One

can also require Uj and R' to be of a given uncountable cardinality X. (For

X the successor of a regular cardinal, this follows from [Shi]; otherwise, use
[MSh].)

(3) In order to speak about the type, J/A of a uniserial module in a natural
way (rather than indirectly as we have done in Corollaries 3 and 4), one could

add to the two-sorted language unary predicates J and A and prove, completely

analogously, a Transfer Theorem for this language.

(4) The Transfer Theorem is used in [BS3] to show that several new classes

of nonstandard uniserials are nonempty in ZFC. There is, however, one class

studied there to which the Transfer Theorem does not seem to apply: the class

of U £ ^4 of type J/A such that A is principal, P — Rp is principal and
J* = (Xt°=i Rp" (Cl~- Proposition 2.1(b)). The problem is in expressing the last

equality. In this case, one can use Theorem 6 of [Shi] to derive a suitable
transfer result for uniserials of cardinality N[.

Added in revision. Barbara Osofsky has recently given the first direct construc-

tion in ZFC of a nonstandard uniserial; her method also constructs nonstandard

uniserials of different kinds.
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