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MARTINGALE TRANSFORMS
WITH UNBOUNDED MULTIPLIERS

J.-A. CHAO AND R.-L. LONG

(Communicated by Lawrence F. Gray)

Abstract. The boundedness of martingale transforms with the "multiplier"

sequence in various classes is studied.

1.  INTRODUCTION AND PRELIMINARIES

Let (X, SF, p) be a probability space and let {5rn}n>\ be a nondecreasing

sequence of sub- a -fields of £F such that SF = V^ • We consider processes

/ = {/}„>i adapted to {&~n}n>i and use the convention that ^o = 0. For 0 <

p < oo, we say that / is LP-bounded and write f e L» if \\f\\p = sup„ \\fn\\P <

oo. The maximal function of / is defined by /* = sup„ \f„\ and the square

function of / is given by S(f) = [££, \dkf\2)x'2 where dkf = fk - /*_,,
k = \ ,2, ■ ■■ , is the difference sequence of /. For martingales, we consider

the following versions of Hardy spaces, 0 < p < oo :

^ = {/-ll/lk = lirilp<oo};
Hps = {f:\\f\\HPs = \\S(f)\\p<^}.

It is well known that HP « LP « Hps for 1 < p < oo , and Davis [8] proved that

Hi « Hi. Note that, in general, Hi ¡jé //| when 0 < p < 1 . We shall denote

Hp = HP « H% whenever 1 < p < oo . We also consider the conditioned square

function of / given by

s(f)
1/2

££(|4/]2|^-i)
k=\
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and the Hardy space it defines:

^ = {/: ll/llh" = ||5(/)|U < oo}.

This version of Hardy spaces is more interesting to study when 0 < p < 1 . The

spaces of martingales with bounded mean oscillation are defined, for 1 < p <

oo, by

BMO,

bmo,

II/IIbmo, = sup

bmop = SUP
n

/    °° P \]I/P "t

£4/    I ¿5) <oo   ;
k=n

oc

(    £  dkf    \rn) <00
>   k_„ il ' -I oo s

The John-Nirenberg theorem gives that all BMOp spaces are equivalent for

1 < p < oo. We shall denote them simply by BMO and the norm by || • ||*.
However, bmo,, form a decreasing family as the index p increases. Among

them, the most important ones are bmoi and bmo2. Fefferman's duality theo-

rem says that BMO is the dual space of Hx, and Herz [10] showed that bmo2

is the dual space of h1. Moreover, Herz [10] obtained that the dual spaces of

HÏ and hp are A„ and X,, respectively, where a = | - 1 > 0, and

r / °°      2     \1/2 i
\a = j/ G L2 : H/lta = sup   û)-°£Î J^/   1^1 <oo|;

^=|/GL2:||/|^=sup   œ-aE{   £4/   I ̂ ¡J <oo|,

with <y„ = 5Z \I\Xi ', here the summation is over all ^-atoms / and |/| denotes

the measure of /. Note that Ao = BMO and ilo = bmo2.

We introduce the following classes of processes v = {vn}n>\  adapted to

{&n}n>l '■

Vp = {v: \\V\yp < oo}, 0 < p < oo.

The martingale transform Tv for a given v is defined by Tvf= J2T=i vn-\dnf ■

Burkholder [3] showed that when v G V°° , then Tv is of type (p, p) for 1 <
p < oo and of weak type ( 1, 1 ). The purpose of this paper is to study certain

boundedness behaviors of the transform Tv when the "multiplier" sequence v

lies in other V classes. A special case of our main result is that, for v G Vp
with 0 < p < oo , Tv is bounded from BMO to the Hardy spaces HP and //|.

A similar result in the continuous parameter case for Brownian martingales was

obtained recently by Bañuelos and Bennett [1]. However, when 0 < p < 1,

their argument depends on the atomic decomposition, which is not available

for the discrete case in general. The main idea in our proof for 0 < p < 1

involves a certain commutability concept that is used to obtain the extrapolated

results. The method of extrapolation was first introduced by Burkholder and

Gundy in [5].

2. Boundedness of Martingale transforms

We first present two elementary results on the boundedness of Tv .
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Theorem 1. If 0 < p, q < oo, v £ V and J«| + |, then Tv is of types

(H¡,Hrs) and (h«, b/) w'fA ||7;|| < \\v\\v?.

Proof. This follows directly from the pointwise estimates:

S(Tvf)(x)<v*(x)S(f)(x)   a.e.;

s(Tvf)(x)<v*(x)s(f)(x)   a.e.

A similar result for stochastic integrals was obtained by Bichteler [2].

Note that Tv is self adjoint in the sense that for nice / and g, E(gTvf)

— E(fTvg). Using this and a duality argument, we obtain

Theorem 2. Let 0 < a < oo,  -^- < p < oo and v G V . Then
— '    l+a       c  —

(i)   Tv   is of types   (Aa,Aß)   and  (ia,iß)   where  ß   =   a - j¡   >   0

(i.e., ±<p<oo);

(ii)   Tv  is of types (Aa, Hr)  and (Xa, hr)  where 0<£ = i-a<l

(i.e., j^ <P<±).

In both cases, \\TV\\ < C\\v\\yp.

Proof. Set t = ^. When £ < a, let q (0 < <? < 1) be such that ± + ± =

1 + a = j . Note that a = } - 1 and /? = ± - 1. For nice f £ Aa and g £ H§ ,

from Theorem 1 and Herz's duality result [10], we have

\E(gTvf)\ = \E(fTvg)\ < CH/IIaJIT;^ < C||ü||Kp||/lkll^llic.

Hence Tvf £ (H¡)' = Aß and ||7;/||A, < CMvWWa. ■

When a < j¡ < 1 +q , let q ( 1 < q < oo) be such that \- + \ = \ • Note that in

this case, | + j = 1. The same duality argument shows that r„/ G (JäJ)' = //r

and ||7;/||r<C||W||K,|mk.

The remaining statements involving Jl« follow from a similar argument using

the duality results in [10].
We single out a very special case of Theorem 2(ii) when a = 0 :

Corollary 3. For f g   BMO and »eP with  1 < p < oo,  Tvf £ LP and

\\Tvf\\P<C\\v\\VP\\f\\*.

We note here that, for martingales v and /, T(v, f) = ¿^,nv„-id„f is

a martingale version of the paraproduct as studied in Coifman-Meyer [6, 7].

Corollary 3 corresponds to a fundamental result on paraproducts in the study of
pseudodifferential operators. (See [6].) A similar result for stochastic integrals

was obtained by Lepingle [11].
We shall use the idea of extrapolation to treat the case not covered by Theo-

rem 2, i.e., p < y^ ■ We introduce the following notion of commutability:

Definition. A martingale valued linear operator T defined on V°° is *-quasi-

commutable with stopping times if, for all stopping times t and v £ V°° ,

(1) (T(v-v^-x)fj *{t=oo} = 0   a.e.;
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T is S-quasicommutable with stopping times if, for all stopping times t and

V £ V°° ,

(2) s(t(v-v^-x^x{x=oo} = 0   a.e.;

T is s-quasicommutable with stopping times if, for all stoppings time t and
V £ V°° ,

(3) s(T(v-v^-x^x{T=oo} = 0<i.t.,

where the process v^'^ is given as usual by

W(T_1)  = {%-l)A«}«>l

with %_i)An = WiZ{T=2} + • • • + v„X{x>n+i},    for « > 1.

Lemma 4. Let 0 < p0 < r0 < oo and T be a martingale valued linear operator

on v £ V°° .

(i) If T is *-quasicommutable with stopping times and is of the weak type

(VPo, H?) with the bound \\T\\, then for all pairs (p, r) satisfying

(4) -=-,        0<p<Po,
P     r     po     r0

T is of type (Vp , HI) with the bound C\\T\\.
(ii) If T is S-quasicommutable with stopping times and is of weak type

(Vo, Hg°) with the bound \\T\\, then for all pairs (p, r) satisfying (4),

T is of type (Vp , Hrs) with the bound C\\T\\.
(iii) If T is s-quasicommutable with stopping times and is of weak type

(VP°,hr°) with the bound \\T\\, then for all pairs (p, r) satisfying (4),
T is of type (Vp, hr) with the bound C\\T\\.

Proof, (i) Suppose T is *-quasicommutable with stopping times and is of

weak type (Vp°, Hi0). We first assume that 1121 = 1 and \\v\\VP = 1 for a
given v £ V°°. For X > 0, set ô = krlp, and consider the stopping time

t = inf{« : \vn\ > S} . We have {t < oo} = {v* > ô} and (u^-1')* < ô . Write

v = v - i;(T-1) + u(T_1). Using (1), we get

{(T(v))* > 2À} c Í(t(v-v^-x^)\   >AöI(t(v(t-^))   >à\

c{x<oo}uÍ(t(v^-x^)]   >x\.

It follows from the weak type property of T that

\{(T(v))* > 2A}| < |{r < oo}| + £ [ /        + /        (>-'>) *P°dp

< |{T < 00}| + ^|{T < Ocjp/A, + j¿y^<g   V*P°dp

= Ii+I2 + h,    say.

*Po       1 ro/Po

ro/Po
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Now

/»OO /«OO

/    Xr~xIidX=        Xr~x\{v* > Ö = Xrlp}\dX
Jo Jo

yoo

= C       tp~l\{v* > t}\dt = C\\v*\\p = C.
Jo

We note that

§rt Sro-P(r0/Po-l)

ro \{x < oo^o-i = —_—[Sp1{v* > ÔW/*>-i

To/Po-1
< ¿(r/p)(r0-p(r0/Po-l))-ro     [ v*pdß

Ja
— %rr0(l/p-l/p0+l/r0)-r0\\v*\\P{ro/Po-l) _ j

because of (4). Thus

/•OO /-OO

/    Xr-xI2dX<C       Xr-x\{z<oo}\dX<C.
Jo Jo

For an estimate involving Ij,, denoting a = r(P~p<^ - 1 < -1, we have

/•oo /-oo /    r \ ro/Po

/    Xr~xhdX = C       Xr-x-r°-aXa( v*Padp)      dX
Jo Jo \J{v*<S} /

r /   [ \ r0/Po —1 ̂         /-oo /•

< Csup\Xe-l-r°-a    / «**dp) \ • /    Aa / «**>tf/î</A
A     I \J{v<S) J )     Jo J{v'<S}

= CJi • J2,    say.

Here

Ji < supi.Xr~x-r°-aô^-p)^!">-^\\\v*\

— sup J %r-r0+(rr0/ppo)(j>o-p) I < 1 .

p(Wpo-i)

J2= f [    XadXv*p»dp <C i v*(p/r)(°+x)+Podn = c [ v*pdp = C.
Ja Jypir Ja Ja

Combining these estimates, we get, with \\T\\ = 1,

Xr~x\{(T(v))* >2X}\dX<C   for all v £ V°° with  ||u||K, = 1:
/Jo

Since V°° is dense in Vp , this inequality is valid for all v £ Vp .

Therefore from the linearity, we have, in general,

\\T(v)\\H: < C\\T\\ \\v\\v,  for all v£V».

This completes the proof of (i).

The proofs of parts (ii) and (iii) are similar.   For instance, if T is S-
quasicommutable with stopping times and is of weak type (VPa, Hg), then,
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with the same stopping time t ,

Ís(t(vC\ > 2X\ c ¡s(t(v - v(T-V)\ >x\u Is(t(v(t-V)\ > X

c {t < 00} U (s(t(v^-X))\ > x\ ,

and

K3») > n}\s i,r < **+1 [t.,+/_, (•'--F*
Wpo

The rest of the proof follows the estimates for (i).  The same is true for the

proof of (iii) concerning the conditioned square functions s.

Our main result is the following extension of Theorem 2 for the case 0 <

P<k-F        a

Theorem 5. Let 0 < a < 00, 0 < p < - and v £ Vp, and set \ — ¿ — a. Then
— ' *.        a ' r       p

Tv is of types (Aa,Hl), (Aa,Hrs) and (Xa,hr) with the bound C\\v\\vp ■

Proof. The case 7^ < p < ¿ has been covered by Theorem 2(ii). Assume that

p < T^ . Let f £ Aa (or Xa ) be given and fixed. Consider Tvf as an operator

T defined on V°° . From Theorem 2(h), we know that T (for the fixed /) is

of type (Vp°, Hr°) (or (VPo, hr°) ), for some (p0, r0) such that j^ < Po < ¿

and ;| = j- - a < 1 with the bound CJI/IU,, (or C||/|k ). From Lemma 4,
the desired boundedness properties follow provided that T satisfies the various

quasicommutabilities with stopping times.

Let v £ V°° and t be any stopping time. Since

(t, - Vlt-l))k-l = Vk_i - (ViX{x=2} + ■■■ + Vk_iX{x>k}) , k>l,

we have

n

(Tv-V^f)n = J> - v^~x\_idkf,        n>\;
k=\

r     n

Sn(Tv_v^-\)f) -

Sn(Pv-v^-of) —

Y;\(v-v(r-l))k-i\2\dkf\:
n 1/2

Lfc=i

r    n

£ \(v -v^~x\_i\2E(\dkf\2 \3rk_i)
k=\

n > 1;

1/2

n> 1.

They all vanish on the set {t = 00}.   Therefore the proof of Theorem 5 is

completed.

Again, we single out the special case when a = 0.

Corollary 6. For 0 < p < 00 and v £ Vp,

(5) \\Tvf\\m<C\\v\\v,\\f\\„        /GBMO;

(6) \\Tvf\\H¡<C\\v\\v4f\U,        /GBMO;

(7) \\Tvf\W < CHcllK.il/llbmoj,        /G bmo2.
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The boundedness behaviors of the transform Tv on H% , h? and AQ , Xa

have been satisfactory, but not on maximal Hardy spaces Hi. For instance, the

property parallel to Theorem 1 for Hi is not readily obtainable. Nevertheless,

we have the following boundedness result of Tv on Hi with the restriction

q>\.

Theorem 7. Let 0<p <oo,  1 <q < oo, \ = | + | and v £ Vp . Then Tv is

of type (Hq, HI) with the bound C\\v\\Vf.

Proof. From Davis's decomposition [8] for / g Hq, q > 1, we have / =

/(l)+/(2)   with

|£|¿„/(1)|||9<C||/||„,;

\dnf{2)\ < C/„*_,    and   ll/^Utf, < C\\f\\m.
(This decomposition for the case q > 1 is obtained similarly as for q = 1 in

[8].) Hence,

\\(Tvfy\\r<c(\\(TvfWy\\r + \\(TvfMy\\r)

< C\\v\\y, (||£ |i/„/(1,| \\q + ll/(2)||^) < C||t;|

Theorem 7 does not cover the case that q = oo. In this case, the spaces Hi

and ¡FfJ should be replaced by BMO for the corresponding results as obtained

in Corollary 6. For the case when p = oo and q = oo, we have that Tv , with

v £ V°° , is of type (BMO, BMO) as a special case of Theorem 2(i).

We finish this section by providing the weak type boundedness of Tv on!1,

as one would expect.

Theorem 8. Let 0 < p < oo, v £ Vp and L = I + i. Then Tv is of weak types

(Lx, Hi0) and (Lx, Hrg). Namely, for all Lx-bounded martingale f, X > 0,

\{(Tvfy > x}\ < (ximii)r° ;      \{S(Tvf) > X}\ < (jll/lli) °-

Proof. Without loss of generality, we assume \\v\\yp = ||/||i = 1 • Do a Gundy

decomposition [9] on / with S = Xr°, we have / = /(1) + /(2) + /(3) with

||/(%<C   and   \A\ = \{m>\dn^\?V}\<Cr-,

VP\\J \\Hi-

|£l^/(2)l <c,

||/(3)||oo < Co   and    H/^H^CrP-1, 1</7<oo.

Since

{(Tvfy > 2X} c {(Tvf^y ¿ 0} u {(TvfMy >x}u {(Tvf^y > x},

we get, letting r be such that 7 = £ + 2 >

\{(Tvfy > 2X}\ < \a\ + x-H(TvF2))X + cri/(3)ll2

< CS~X + X-'° \\v* Y \d„f(2)\ If0 + CX~rôr'2
II       *-~i \\r0

< cx-r°+x-r° (\\v*\\p ||£ \dnfi2)\ I )r° + cxrr°w2-lM < CX~r°.
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A similar argument gives \{S(Tvf) > 2X}\ < CX~r°.  Linearity completes the

proof of Theorem 8.

As a summary, we list the results obtained in this section by treating the

martingale transform as a bilinear operator T : (v, f) —> Tvf. T is then of
the following types, 0 < p < oo :

(Vp,Hqs;Hrs)   and   (Vp, h?; hr),     0 < q < oo,  - = - + - ;

(Vp,Aa;Aß)   and   (Vp,Aa;lp),    0<a<oo,ß = a-->0;

(Vp , Aa; HI), (Vp , Aa; Hrs)    and   {V>,Í>;V),

- =-a>0, [0 < p < -
r     p \ a

(Vp, H" ; H[), \<q<oo,   - = - + -;
r     p     q

(Vp, Lx ; v/Hr°)   and   (Vp, Ü ; v/Hr°),        1 = 1 + 1.
A r0     p

When both v and / are martingales, T is one version of paraproducts on

martingales. The properties of various variants of paraproducts on martingales

and certain necessary conditions for the boundedness of these transforms will

be discussed in a sequel to this paper.
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