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Abstract. We give a counterexample of the result of Béaver and Cook con-

cerning a generalization of the Alexandroff theorem for regular, finitely-additive

states on quantum logics using states on the system of all splitting subspaces of

an incomplete inner-product space. Moreover, we introduce another type of

state regularity which entails countable additivity of states on logics.

1. INTRODUCTION

We recall that a quantum logic is a poset L with the minimal and maximal

elements 0 and 1, respectively, and with the unary operation (named orthocom-

plementation) i:L-»I such that

(i) (a-1)1- = a, for any a £ L;

(ii) if a < b, then b1- < a1- ;
(iii) a V a1- = 1 , for any a £ L;

(iv) if a < b1, then a V b £ L; and
(v) if a < b , then b = a V (b A a^) (orthomodular property).

(V and A denote the operations sup and inf.) We note that, in view of

(i)-(iv), if a < b, then b A a1- exists in L. We say that two elements a and

b of L are orthogonal, denoted a _L b, if a < b1-. If L has the property that

any sequence {an} of mutually orthogonal elements of L has a supremum,

\/n<Ll an , in L, then L is called a o-quantum logic.

A Boolean algebra is a poset 3§ containing the minimal and maximal ele-

ments 0 and 1, respectively, such that ¿% is equipped with the operation of

complementation _L satisfying (i) and (ii) of the definition of quantum logic

and has the additional properties

(L) avftgj1    for any a, b £¿$    (lattice property)

(so that any nonempty finite subset of 3§ has supremum and infimum)

(D) (aV b) A c = (a A c) V (b A c)   (distributive property).
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It is well known that every Boolean algebra is isomorphic to some algebra of

sets.
A nonempty subset 38 of a quantum logic L is a Boolean subalgebra of L

if (i) 0, 1 e 38 ; (ii) a £ 38 implies aL £ 38 ; and (L) and (D) hold in 38 .
A state (more precisely, a finitely-additive state) on a quantum logic L is a

mapping m: L -» [0, 1] such that (i) m(l) — 1 ; (ii) m(a V b) = m(a) + m(b)
whenever a ± b . A state m is countably additive if /n(V^li a«) = X^i w(an)

whenever {a«}^, is a sequence of mutually orthogonal elements and V^=i a« e

L. A state aaj is completely additive if m(\JieTat) = J2t€Tm(at) whenever

{at : t £ T} is a system of mutually orthogonal elements of L and \JteTat £ L.

In the present paper, we show that the proof of Béaver and Cook [2] on

regular states contains a gap, and we present an example of a regular, finitely-

additive state that is not countably additive. On the other hand, we give a new

type of state regularity that will entail the countable additivity.

2. Regular states

Let 3° be a nonvoid subset of a quantum logic L. A state m is called ir-

regular (more precisely, 3°-regular in the sense of Béaver and Cook), if for each
e > 0 and each b £ L there exists an a £ 3s with a < b and m(b A ax) < e .

One of the most important examples of a quantum logic is the system L(H)

of all closed subspaces of a real or complex Hilbert space H, which is a com-

plete lattice and plays a considerable role in the axiomatic model of quantum

mechanics (see, e.g., [15]). The famous theorem of Gleason [8] asserts that

any countably-additive state m on L(H), 3 < dim H < No, is of the following

form

(2.1) m(M) = tr(TPM),        M £ L(H),

where T is a positive operator of the trace class on H and PM is the orthogonal

projector from H onto M.
More generally, let S be a real or complex inner-product space with an inner

product (•, •). By a subspace of S we shall understand a linear closed subspace

of S. For any subspace M of 5, M1- denotes the set of all x £ S such that

(x, y) = 0 for all y £ M. We denote by E(S) the set of all subspaces M of
5 such that M + ML — S. Then L = E(S) is a quantum logic which contains

any complete and, therefore, any finite-dimensional subspace. Moreover, E(S)

is a er-quantum logic iff S is complete [6].

Let 3°L = {a1 : a £ 3s}. An element b £ 3° is called finitely coverable if,

for any sequence {a\ , ä£\ ...} Ç 3d-1 such that Viui ak exists in L and b <

VfcLi 0-k > there is an integer n such that V£=i ak exists in L and b < \Jl=l ak .

3s is called finitely coverable if each element of 30 is finitely coverable.

Béaver and Cook [2] presented the following result: Let L be a rj-quantum

logic and 3s ç L be finitely coverable such that 301- contains the join of any

sequence in 3°L . Then any ^-regular state on L is countably additive.

Unfortunately their proof is incorrect, because they used the subadditivity of

a state (i.e., m(a) < J2"=l m(a¡) if a < \J"=l a¡), which is invalid, in general,
in quantum logics (consider, for example, a state of the form (2.1)). Also, the

assumption that L is a cr-quantum logic was not used in the proof. If m is

subadditive—for example, if L is a Boolean algebra—their proof works.
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Below we present an example of a quantum logic L, a finitely-coverable

subset 3° CL such that 3s L contains the join of any sequence in 3e1- , and a

^-regular state m on L that is not countably additive. In particular, it shows

that ^-regularity is not a sufficient condition for countable additivity.

Counterexample 2.1. Let S be an inner-product space. For any x £ S, \\x\\ =

1, the mapping mx on E(S) defined via

(2.2) mx(M) = \\xM\\2,        M£E(S),

if x = Xm + xM± , where xM £ M, xM± £ M1-, is a state on the quantum

logic L = E(S). The system 3° — 3s (S) of all finite-dimensional subspaces

is finitely coverable. If S is a separable, incomplete inner-product space, then

any mx is a ^-regular state which is not countably additive.

Proof. If M and N are mutually orthogonal, splitting subspaces of S, then

M + N = My N £ E(S) (see, e.g., [9, 5]). Hence, it is simple to verify that any

mx is a state of a quantum logic L = £'(5').

Now we show that 3s = 3^(5) is finitely coverable. In fact, any M e E(S) is

finitely coverable by 3s1-. To see ihis, let M £ E(S) and let {M¡-, M^ , ...}

be a sequence in 3°L such that M ç \/kx>=l Mk (the latter join belongs always

to E(S)). Each Mk is a subspace of finite codimension. If the integer nk ,

Ac = 1, 2, ... , is the codimension of Mf- V • • • V Mk £ E(S), then n\ > aa2 >

• ■ • > 0. Thus, for some i, n¡ = n¡+x = ■■■  and M < \f'k=l Mk .
Suppose that S1 is separable and incomplete. It is straightforward to show

that mx is of the form

(2.3) mx(M) = \\PJIx\\2,        M£E(S),

where PM is the orthoprojector from the completion S of S onto the comple-

tion M of M. The separability of S entails the existence of an orthonormal

basis (ONB) {xn} in any splitting subspace M of S. It is simple to show that

{x„} is an ONB in M, too. Therefore, mx(M) = ||/>Fx||2 = \\T,nPx„x\\2 =

Yin \\Px„x\\2, where Pu is an orthogonal projection onto one-dimensional sub-

space spanned by a nonzero vector u £ S.

Given e > 0, we can find a finite-dimensional subspace jV = sp(xi, ... , xn)

ç M, where sp denotes the span over Xx, ... , x„ such that mx(Mr\N±) < e .

Since S is incomplete and separable, there is a maximal orthonormal set

{•*i}Si m S that is not a basis (see, for example [11]). Consequently, there

is a z £S such that 1 = ||z||2 # £~i Kz> */)l2 • Therefore, mz(S) = ||z||2 /

E^i l(z, x¡)\2 = £2i mz(Px,), although V^i Px, = S, and aaiz is not count-

ably additive. Actually, in this case E(S) does not possess any countably-

additive states, as a consequence of the result of [6] saying that S is complete

iff £'(5') has at least one countably-additive state (completely additive for gen-

eral S). Therefore, any of the states mx is a ^-regular state but not countably

additive.   Q.E.D.

On the other hand, we show below that on a very important quantum logic,

L(H) of a Hubert space H, the assertion of Béaver and Cook is correct, even

when a finitely-additive state is not subadditive.
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Theorem 2.2. A finitely-additive state m on L(H), dim H > 3, is of the form

(2.1) iff m is 3°(S)-regular (in the sense of Béaver and Cook).

Proof. Suppose that m is of the form (2.1). Then m is completely addi-

tive. Let M be an arbitrary element of L(H) and an ONB {ft} in M. Due

to the complete additivity of m, there is a sequence {/„} ç {ft} such that

m(M) = Yï,„ m(Pf„) ■ For e > 0, there exists an integer k sufficiently large for

which N = sp(/i, ... , fk) has the property m(M n N-1) - m(M) - m(N) =

2ZZk+im(Pfn)<e.
Now let m be a 3s(H)-regular (in the sense of Béaver and Cook), finitely-

additive state on L(H). Due to the result by Aarnes [1, Proposition 2, p.

609], any finitely-additive state on L(H) is uniquely decomposed into the sum

m = mx + mi, where mx is a completely-additive state and aw 2 is a finitely-

additive state that vanishes on finite-dimensional subspaces of H. Due to the

Maeda theorem [12] or Aarnes [1], mx is of the form (2.1) for some positive

operator of trace class on H. The ^a(//)-regularity of m and mx entails

AAÍ2 = 0. Thus, if m is a 3ö(H)-reg\xlar state on L(H), then m = mx and m

is of the form (2.1).    Q.E.D.

A system of states, Jf , of a quantum logic L is full if the following condition

is satisfied: If m(d) < m(b) for all m£j(, then a < b.

Example 2.3. There is a lattice a -quantum logic L with a full system of count-

ably-additive states on L, a subquantum logic Lq of L that is not a lattice,

and a finitely-coverable system 3° ç Lo such that the restriction of any m £ J£

onto Lo is a ^-regular state which is not countably additive.

Proof. Let S be an incomplete, separable inner-product space. Put L = L(S),

and for any M £ E(S) define <p(M) = M £ L. Then

(i) if M ¿ N, then cp(M) / tp(N) ;
(ii)  tp(M V N) = tp(M) V tp(N) if M 1 N ; and

(iii) cp(ML) = cp(M)xs = {x£~S:(x,y) = 0 for each y £ cp(M)} .

If we put Lo = {<p{M) : M £ E(S)} , then L0 is a subquantum logic of L that

is isomorphic to E(S). The system Jf — {wx : x £ S, \\x\\ = 1}, where wx

is a mapping on L defined in a manner analogous to mx in (2.2), is a full

system of countably-additive states on L. Indeed, let wx(M) < wx(N), x £

S, \\x\\ = 1, then wejiave wjjlf) = (PMx, x), M e L(S), where PM is the

orthoprojector from S onto M. Therefore, for all vectors x from S we have

(PMx,x) < (PNx,x), so that (PMx,x) < (PNx,x) for all x £ S; i.e.,

MCN.
A finitely-coverable system 3d is defined as 3s = {tp(M) : M £ E(S),

dim M < oo}. Following the lines of Counterexample 2.1 and noting that

wx(cp(M)) = mx(M) for each M £ E(S), we see that wx\Lq is ^-regular but

is not countable additive.   Q.E.D.

3. ALEXANDROFF'S THEOREM ON QUANTUM LOGICS

Now we introduce another type of state regularity that will imply countable

additivity. Let 3s be a nonvoid subset of a quantum logic L. We say that a

state m is 3°-regular if, for every sequence {<7nj£ii  of mutually orthogonal
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elements of L such that q = V^Li Qn exists in L, there is a block 38 ç L

(i.e., a maximal Boolean subalgebra of L) such that for each e > 0 and every

r £ {q, qj-, q£ , ...} , there exists a p £ 3803a with p < r and m^Ap-1) < e .

It is evident that any ^-regular state is a ^-regular state in the sense of

Béaver and Cook. The converse assertion is not true, in general, as we shall see

below.
If L is a Boolean algebra, then both notions coincide.

Theorem 3.1. Let L be a quantum logic, 3s ç L be finitely coverable, and 3s1-

contain the join of any sequence in 3Ö± . Then any 3°-regular state m on L is
countably additive.

Proof. The proof is similar to that in [2]. Let {qn}^=x be an orthogonal se-

quence in L with q = v/^li Qn in L. Then q > \/"=l q¡ for all w > 1 and

m(#) t YH=x w(<7¡) > so that m(q) > £~, m(q¡). For {qn}„*Lx there is a block

38 of L such that, for any e > 0, there is a sequence {px, Pi, ■ ■ ■ } Q 38 n 3s

with pn < q^ and m(qnL A p„) < e/2" . Also, there exists a p £ 38 r\3B

with p < q and m(q A p1) < e. Thus, /a1- > <?x = A~i í/1 ^ /X¡lxPi> so
/? < V¿íi p/" • Since ^ is finitely coverable, there exists an integer k such that

p < Vf-iPr • Also, we have m(pnL) = m(q„) + m(qnL Ap^), and this implies

m(Pn) ~ e/2" < w(ij,„). Similarly, m(p) + e > m(q). Using the subadditivity

of m in Boolean subalgebras, we conclude that

oo oo k

n=\ n=\ n=\

> m(q) - 2e.

Therefore, m(q) = ZZi m(q„).   Q.E.D.

Let L = L(H) be the quantum logic of a Hubert space H, and 3s =3°(H)
be the system of all finite-dimensional subspaces of H. Then any countably-

additive state m on L of the form m(M) = tr(TPM), M £ L(H), where

T is a positive operator of trace equal to 1, is ^-regular, and m, 3s, L

satisfy the conditions of Theorem 3.1. Moreover, in view of Theorem 2.2, the

^(//)-regularity and the Js(//)-regularity (in the sense of Béaver and Cook)

coincide on L(H) if dim// > 3 . On the other hand, we recall that any count-

ably additive state on L(H) is of the form (2.1) iff the dimension of H is a

nonmeasurable cardinal ^ 2 ([4, 7]).

Example 3.2. Let^S be an incomplete, separable inner-product space. For any

unit vector x £ S we define a mapping mx: E(S) -, [0,1] via mx(M) —

\\PMx\\2, M £ E(S), and let 3s be the system of all finite-dimensional sub-

spaces of 5. Then mx is ^-regular in the sense of Béaver and Cook and not

^-regular. This follows from the result in [6] saying that S is complete iff

E(S) possesses at least one countably additive state.

Corollary 3.3. Let S be of a countable orthogonal dimension (i.e., the cardi-

nality of any maximal orthonormal system in S is countable). S is complete
iff E(S) possesses at least one 3s-regular state, where 3s is the system of all

finite-dimensional subspaces of S.

Proof. This follows from Theorem 3.1 and the result in [6].   Q.E.D.
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We note that according to [3, pp. 21, 38], the range of the observable cor-

responding to the momentum operator is a block in 1 = L(H) that does not

contain nonzero finite-dimensional subspaces. Therefore, not every block in

L(H) may be used for an approximation of a 3°(H)-regular state.

4. Regularity on ct-classes

Now we exhibit the problem of the countable additivity of regular states on a

special type of cr-quantum logics that are called rr-classes, and we present two

results in this direction.

Let X be a nonempty set. A o-class L of subsets of X is a collection of

subsets of X that satisfy the following:

(i) X £L;
(ii) if E £ L , then Ec : X - E £ L ;

(iii) if Ai £ L, a > 1, are mutually disjoint, then (J^i A¡ £ L.
The set L may be regarded as a partially ordered set, where the partial

ordering is defined by the set-theoretical inclusion, and A1 = Ac. It is easy to

check that L is a cr-quantum logic, where sup and inf, F V G and F A G,

respectively, are defined in the usual way relative to L. Note, however, that

F V G (F AG) need not equal F U G (F nG) even if the former exist in L ;

they are equal if the latter are in L.

In the following two examples, we show that the subadditivity does not hold,

in general, relative neither to U nor to V.

Example 4.1 [10, p. 71]. Let X = [0,6] and L = {0, X, A, B, C, Ac,
BC,CC), where A = [0,4],B = [2, 5],C = [0, 1]U[2, 3]U[5,6]. Now

we define the state m on L as follows:

w(0) = O,        m(A) = m(B) = m(C) = 1/4,

m(Ac) = m(Bc) = m(Cc) = 3/4,        m(X) = 1.

Then 1 = m(X) = m(A UfiuC)>3/4 = m(A) + m(B) + m(C), so that m is
not subadditive.

Example 4.2. Let   X  =   {1,2,3,4},L  =   {0, X, {1, 2}, {3, 4}, {1, 3},
{2,4}},m(0) = 0,m(X) = l,m({l,2}) = m({3,4}) = l/2,m({l,3}) =
l/3,m({2,4}) = 2/3. Then

1 = m(X) = m({l, 2} V {1, 3}) > m({l, 2}) + m({l, 3}) = 5/6.

On the other hand, any m satisfies the condition of subadditivity (with re-

spect to the union U) for two sets A, B £ L if A U B £ L [10, p. 71].
Now we show that the proof of the result of Béaver and Cook works in the

case of tr-classes in the "almost" original formulation. Namely, the following

is true:

Theorem 4.3. Let L be a o-class of subsets of a set X ^ 0. Let 3e ç L be

finitely coverable (with respect to V) and contain the union of any sequence in

it. Then any 3°-regular state m (in the sense of Béaver and Cook) on L is

countably additive.

Proof. We show that m is ^-regular. Since 3° is closed with respect to any

union of elements from 3°, we conclude by [13] that there is a Boolean sub-

algebra 38 ç L containing 3°.  Without loss of generality, we may assume
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that 38 is a block of question which is necessary for the validity of Theorem

3.1.   Q.E.D.

A different approach to that of Alexandroff for a criterion of ct-additivity

of a set function defined on a cr-algebra of subsets of a set X is that of

E. Marczewski [14]. In this case, no topology on X is supposed. We show

that such an approach may be applied to cr-classes.

A collection 3t of subsets of a set X / 0 is said to be compact [14] if for

any sequence {Kn}'£=l of elements of 3? we have Kx D Ki n • • • D Kn ^ 0 for

all aï > 1, imply f|£l, K„ ^ 0 . Let L be a o -class of subsets of a set X and
m be a state on L. We say that aai is compact (with respect to 3?), provided

that for any E £ L and any e > 0 there exist a K £ 3f and an F £ L, such
that E D KD F and m(E nFc)<e.

Denote L = {E<1 Fc : E £ L, F £ L, E 2 F and there is a K £5? such
that EDKDF}.

Theorem 4.4. Let L be a o-class of subsets of a set X. Let 3f C2X be compact,

m a compact state on L, and L contain every finite union of elements from L.

Then m is countably additive.

Proof. It suffices to show that lim„ m(En) = 0 for each decreasing sequence

{£„} in L such that f}„En = 0. Let e > 0, and for any aa > 1, choose a

K„ £ 3? such that En D K„ D Fn, where F„ £ L and m(E„ n F„c) < e/2".

Evidently 0 = fj^li En 2 fCi Kn 2 CÇ=i F" • Therefore, there is an integer
aao such that, for az > az0 , we have D¿=i K¡■ = 0 ; hence f]"=l F¡ = 0 .

As in the proof of Theorem 4.3, we conclude that L is contained in a Boolean

subalgebra of L, so that m is subadditive on it. Therefore, for any aj > aa0 ,

we have

m(En) = m (f]EA =m(f]Ei-f] F,) < m l\J(Et n Ff) J < e.

Thus, lim„ m(E„) = 0, which entails the rr-additivity of M on L.    Q.E.D.

Remark. Observe that in Theorem 4.4, 3f need not be contained in L.
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