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AN APPROXIMATION CONNECTED
WITH THE EXPONENTIAL FUNCTION

K SONI AND R. P. SONI

(Communicated by J. Marshall Ash)

Abstract. Some recent techniques in the uniform asymptotic expansions of

integrals are used to obtain an expansion for a function related to the exponen-

tial function. This function is associated with Ramanujan, Watson, Copson,

and Buckholtz. The results obtained complement those given by Buckholtz.

1. Introduction

Let

(LI) (^S,(z)'=f..-£<!»£.
fc=0

In 1963 Buckholtz [3] gave an asymptotic expansion of S„(z) that is valid in

the whole complex z-plane except z = 1. He proved that if z # 1, then

(1.2) S„(z)~n\l—\   <t>K(z) + Y,n-kuk(z),
^ * i—n

where

(1.3)

N      ' /t=0

Uk(z) = (-i-iV _L_ = (-*)*+1ft(*)
kK    '        \z-\dz)      \-Z (Z-I)2fc+1

Qk(z) is a polynomial of degree k with positive integer coefficients, and fa(z)
is the characteristic function of the set K = {z/\z\ > 1 and \zex~z\ < 1}, see
Figure 1. Furthermore, Buckholtz proved that this expansion holds uniformly

in the region where dfc(z) > e > 0, dx(z) being the distance from z to the

set K. In particular, for z = -1, it yields result of Copson [4]. As z —► 1,

each of the coefficients uk(z) in (1.2) become unbounded. On the other hand,

00.(M) W-f(§)'-î-*ïK + 0:(;j)'   »
This approximation of ^„(1) is associated with a very elegant result commu-

nicated by Ramanujan to Hardy and later discussed at length by Watson [10].
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Figure 1. The z-plane.

Buckholtz remarks that in view of (1.2) and (1.3), Ramanujan's approximation

is a considerably more singular result than it would otherwise appear. Apart

from the fact that the expansion (1.2) is not valid at z = 1, we note that it is

also discontinuous across the curve C, the boundary of K and that the curve

C passes through the point z = 1.

In this note we obtain an asymptotic expansion of S„(z) that holds uniformly

in a neighborhood of z = 1. In particular, we investigate how the behavior of

S„(z) changes across the curve C in that neighborhood. By the foregoing

discussion we should expect z = 1 to be a singular point of the expansion.

Consequently, the expansion is a generalized asymptotic expansion rather than

an expansion of the Poincaré type. As in Watson [10] and Wong [11], we start

with an integral representation of S„(z). By using the integral form of the

remainder,

(1.5) (nz)nSn(z)=  [ \nz-t)"e'dt
Jo

[ (\-u)nenz

Jo
(nz)

By another change of variable,

(1.6)
S„(Z)

nz -jfJo

-n(v-ea+e"'v) e~vdv,

du.

z = e

The change from the z- to the a-plane makes the discussion much simpler later

on. The point z = 1 corresponds to a — 0. Therefore, we want the asymptotic

expansion of the integral (1.6) in the neighborhood of a = 0. Let

(1.7) y/(v) = v - ea + ea

Since y/'(v) = 1 - ea~v , y/"(v) = ea~v, it follows that y/(v) has a simple

saddle point at v = a. As a —> 0, the two critical points v — a and v = 0,

that is, the saddle point and an end of the interval of integration, coalesce. A

uniform asymptotic expansion of such an integral is obtained by first reducing
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it to the standard form given by Bleistein [2]. However, after the standard form

has been achieved, different techniques can be used to obtain the asymptotic

expansion (see, for example, [9-11]). We use a technique developed recently

in [7, 8]. This not only provides the expansion coefficients explicitly, but also

simplifies the discussion of the nature of expansion.

We would like to emphasize two points regarding the asymptotic expansion

given here. The first is that the singularity of the expansion is restricted to

a single multiplicative factor; considering the fact that Bleistein's technique is

applicable, this is not really surprising. The second is that the expansion holds

for all z except the negative real axis. In view of the expansion given by

Buckholtz, this is rather surprising. In §2, after some preliminary discussion,

we state the main result. The proof is given in §§3 and 4.

2. Main result

Before we can state our main result precisely, we need to reduce (1.6) to the

standard form. Let

(2.1) v - ea + ea-v = w2/2 - bw ,

(2.2) b = a{2(ea-\-a)/a2yi2.

In (2.2) the principal branch of the square root function is taken. Furthermore,

b is chosen so that the saddle point v = a in the v -plane corresponds to the

saddle point w — b in the loplane. Now the mapping (2.1) can be given as

„« u    ,       J2[rM + (t)-û)-in'/2
(2.3) w-b = (v-a){-j—j-1     .

Again, we take the principal branch of the function. Thus w — b ~ v — a when

»-»a. By (2.1),

dw      1 - ea~v
(2.4) ^ = ,   .dv        w - b

The point v = a is a regular point of the transformation given by (2.3). In

fact, it can be shown that the mapping w = w(v - a) is one to one and maps

the strip \Im(v - a)\ < n conformally on to a certain region in the w-plane.

Let

(2.5) V=Vl + iV2 = v-a, W = X + iY = w-b,

and let D denote the domain \ImV\ = \Im(v — a)\ < n. The image of D in

the W and the w-plane is denoted by D' and D" respectively, (see Figures

2, 3, and 4). The boundary of the domain D, V2 = n and V2 = -n are

mapped onto the hyperbolic curves XY = n, Y > 0 and XY = — n, 7<0

respectively in the W-plane. The path of integration in each plane is indicated

by an arrow.

By (1.6) and the transformation (2.1),

(2.6) SrM=    r+b e-n(w>l2-bw)e-vdvdw
nz        J0 dw

=  f       e-"^2'2-b^g(w)dw,
Jo
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D

-a (v = 0)

V2 = 7t

v=o

V2 = -7l

Figure 2. The F-plane.  V = Vx + iV2 - v - a.

where

(2.7)

Since by (2.3),

g(w) = (w - b)/(ev - ea).

g(b) = lim g(w) = e a = -,
w—>b Z

we can write (2.6) as follows.

1 /.OO+0

(nz)-xSn(z) - -Hn(b) = /       e-«w l2-bw)G(w)(w -b)dw,
z Jo

roo+b

Hn(b) =  Í
Jo

e-n(w2/2-bw) ^w

(2.8)

where

(2.9)

and

(2.10) G(w) = {g(w)-g(b)}/(w-b).

H„(b) is related to the complementary incomplete error function. The stan-

dard form of the integral mentioned earlier is given in (2.6), but (2.8) is more

convenient for deriving the asymptotic expansion. G(w) is analytic in the re-

gion, which in the W = w - è-plane, is shown as region D' (see Figure 3).

Now we expand G(w) in terms of the polynomials Pk(w), which are defined

as follows:

Qin Po(w)=l,    Pl(w) = w,

P'k(w) = (w - b)Pk-2(w),        Pk(0) = 0,        k = 2,3,....

These polynomials are discussed in a more general form in [7, 8]. Since G(w)

is analytic in the region that includes the origin, we can write

(2.12) G(w) = J2 ckPk(w),       ck = ck(b).
k=0

This series converges in the neighborhood of the origin, at least for \b\ suffi-
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D'

Cl
w=o

XY=n

Figure 3. The W-plane.

Figure 4. The w-plane. W = X + iY = w-b, -b =

/(-«)•

ciently small. By using (2.11) and integration by parts successively, we

for k = 0, 1, 2, ... ,

(2.13) /    e'n{w l2-bw)P2k(w)(w -b)dw = n k-\
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/»oo

(2.14) /    e-"iw2'2-bw)P2k+l(w)(w-b)dw = n-k-1Hn(b),
Jo

where Hn(b) is defined by (2.9). Thus, by (2.8) and (2.12), we have the formal
asymptotic expansion,

(| oo \ oo

k=0 I k=0

Now we state the main result.

Theorem. Let il be a compact subset of the complex plane with the cut, |argz| <

re, |z|>0. Then for all z £ il,

(2.16)
N-l \ N-l

1    ,   V^ C2k+x  \ , ^    C2k(nz)-tSn(z) - Í ± + ;  ; 5±f ) Hn(b) + E Si + E^z. ») '

(2.17)

fc=o / fc=0

yoo+¿>

E2n\
/o

r(2l ")= /
JO

(W b)e-"{w2/2-bw)dw,

2N-\

G(w)-Y, ckPk(w)
k=0

b = b(z) is determined uniquely by z and satisfies

(2.18) e~b2'2 = zel~z.

Furthermore, (i) the coefficients ck are analytic functions of z in il, and (ii)

(2.19) E2N(z, n) = 0(n~Nmax{l, \Hn(b)\}),    n^oo,

uniformly in il.

We will prove this in the next two sections. Here we would like to make a

remark about the expansion. Since ck(b) are analytic functions of z , by (2.15)

it is clear that the only singularity in the asymptotic expansion is due to the

multiplicative factor Hn(b). By [5, pp. 311-312; 1, p. 300], Hn(b) = 0(n~V2)
for b = 0(«-'/2) and for \bnx'2\ » 1,

(2.20) »„(*>-P*'2«?)"2       I"*6KÍ'
I (-nb)~x f < | argè| < n.

If b = a + h, the halflines a = x and a = -x, a > 0 form the boundary of

the region in which the part of the asymptotic expansion with Hn(b) as a factor

dominates. Note that by (2.18), \e~bll2\ = é--«"2-*2)/2 = \zel~z\. Therefore the

boundary D of the region K in the expansion given by Buckholtz, corresponds

to the halflines a = \x\ > 0.

3. The expansion coefficients

Let V = v - a, W = w - b and

(3.1) m = H{2(e-t + !;-\)ie}X12,        |/«(«| < n.

By (2.3), W = f(V), V £ D and D' = f(D). As remarked earlier, / is
analytic and one to one. Also, by (2.2), b = -f(-a), a = Logz . Therefore,
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b is an analytic function of z in |argz| < n and mapping is one to one. If

z belongs to il, then —b is in the interior of D' and b is in the interior of

D" (see Figure 4). To prove that ck are analytic functions of z , we only need

to show that they are analytic functions of b. The ck are computed as follows

(see [8, Theorem 5], 7 = 0)

(3.2) c^) = ̂ - f   G(QMC)di:,
2ni Jcw

where Cw is a simple, closed contour in the w -plane in the region D" enclosing

the points w = 0 and w = b. The functions <f>„(Ç) are generated by the

expansion

1 °°
(3-3) T— = Y,Pk(w)<Pn(C).

^ k=0

They satisfy the following relation

1        x m        i j.    ,„      d MÇ)
4>o(0 = y, M0 = 7i^-r^, <t>k+2(0

mUm^k-m+X^ - b)k+m-

C       ^1VW     (C-b)2'       ™+¿K*J       dC(C-by

The coefficients ck are computed by using the representations [8, (3.1) and

(3-2)],

(3'4) fofc-l(C) = jfc!2fc(f-'¿>)2* '

(3-5) ^2i(0 = ¿2 ry.nmrk-m+ur'-
m=0

We can choose the contour Cw in D" such that [b : b = -f(-a), z = ea ,

z £ il} and w = 0 are inside it. By (2.7) and (2.10), w — b is a regular point

of G. Since

(3.6) G(w) = (ev - ea)~x --(w - b)~l,
z

the only singularities of G are at the points that correspond to v = a + 2kni,

k = ± 1, ±2... . All such points are outside D". Hence the analyticity of

ck(b) follows from the representation (3.2). These coefficients can be obtained

by the residue theorem. Near v = a,

v -a = (w -b) + -(w - b)2 + -^y(w - bf

(3.7) 6 j    36
+ 2TÖ{W-b)4+432Ö{W-b)5 + --

and near v = 0,

(3.8) v = b(ea - l)~lw + 2~\ea - l)-3{eab2 - (ea - \)2]w2 + ■■■ .

The first four coefficients in the asymptotic expansion are,

(3.9) cQ(b) = -(ea -!)-■ + — ,    cx(b) = —,
V 1Z

^) = (^-i)-3+,-«{¿-¿},    cm- __
288'
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By using the expansion for H„(b) when | arg¿>| > f, we obtain

1       z
S„(z) = --+---=; + ••• ■

1 - z     n (1 - z)3

These are the first two terms of Buckholtz's expansion. As z —► 1, a-»0 and

therefore, b —► 0. By taking the limit as a -» 0, co(0) = -|, ci(0) = j¡,

c2(0) = t|j , and c$(0) = j|g . Also 77„(0) = (j^)^2 • The expansion at z = 1
reduces to

«.(D-(T)     {1 + Î2ÏÏ + 288^}-

which agrees with the form of 5„(1) given in [3].

2        4

3+ 135« +

4.  THE REMAINDER  E2N

We will prove that the bound for E2n(z , «) given in (2.19) holds uniformly

in z , z G il. Without loss of generality we may assume that il = {z/| argz| <

ti - ô and A-1 < |z| < Á} . Then | Rea| < InA and | Ima| < n - ô . Denote
this set by il' and let il" = f(il') so that —b belongs to il". Since / maps

the real F-axis onto the real W-axis, il" is symmetric about the real U'-axis.

Let

2N-1

(4.1) R2N(w) = G(w) - £ ckPk(w).

k=0

Now we use some recent results concerning the polynomials Pk and the asso-

ciated functions </>k . By [7, (7.5) and (7.6) with y = 0], (2.17) can be written
as follows:

foo+b
(4.2) E2N(z, n) = n~N \       2N[R2N(w)](w - b)e~n(w '2-bw^ dw

Jo

= n-Nenbí¡2 Ç02N[R2N(W^rb)]We-nw2l2dW,
J-b

9¡R2N(w) = (w- by1 -^-R2N(w),        3m = 33m-x,  m = 2, 3, ... .

We can replace the line of integration in the last integral by the contours C\ and

C2 where C\ is the straight line segment joining -b = -a - ix and — o + iO

and C2 is the halfline x = Re W > -a . Let us assume for the present that

2>NR2N is bounded on C\ and C2. Then

(4.3)

/ &NR2N(W + b)We-nWll2dW = O (f (o2 + t2)ll2e-n(°2-t2V2dt\ ,

= 0(e-n{"2-x2)l2),        n^oo.

Since -b belongs to the compact set il" , the implied constant in (4.3) can be
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taken independently of a and x. Again,

(4.4)   f 3NR2N(W+ b)We-nWl'2dW = o(r \X\e~nX2l2dX

?G) o >0,

O (\e-na2l2\       a < 0.

In each case, the implied constant is independent of b. By (4.3) and (4.4) we

obtain (2.19). To complete the proof we need to show that 3)NR2N(W + b)
is indeed bounded for all W on C\ and C2. Again, we use the technique

developed in [8]. By [8, (6.17)],

(4.5) 2¡n[Rw{w)] = A-(   e»(Ç-w)-lG(QdÇ,

where Cw is a contour in the to-plane within D" and enclosing the points Ç =

0, i = è,and C = w; ec(Ç-w)-1 = -^(t-b)-\r-w)-^, e« = e^"1 .
By [8, Lemma 3],

(46) eN(C-w)-i-Y"_(N + m)\_
i,f.o; crfU      w) Z*, m\2mfÇ-b)N+m(Ç-w)N-m+1'

m=0

Therefore, by a change of variable,

(4.7,     my*? tffr¿ fflgg /& yügB t^ ¿, ;

where tj = Ç — b, W = w - b ,and C^ is the contour in the IF-plane corre-

sponding to Cu, in the to-plane. Note that by (2.7) and (2.10),

(4.8) G(W + b) = -z{e^X-w\-

G(W + b) is not only analytic in D', it is also bounded. On V = V\ ± in ,
-co < V\ < oo, (ev - 1)_1 is bounded. By the Phragmen-Lindelöf theorem

and the maximum principle, G(W(V) + b) = G(W + b) is bounded for V £ D
or W £ D'. Now consider the boundaries of D and D'. The boundary of D'

is the map of V = V\ ± in . Let W = X + iY. By (2.3) and (3.1), V =Vx±in,

(4.9) X2 - Y2 = 2(-e~v< + Vx - 1),        XF = ±jr.

The boundary curves of D' are, XY = n , Y > 0 and XY = -n, Y < 0. By
considering the mapping (2.3), it follows that V\ -* oo if and only if X —» oo.

By (4.9), FÍ ~ X2/2, A" -► oo. Therefore, on the curves XY = ±n,

(4.10) \(ev-l)~l\ = (ev'+ 1)-1 <e~x2/\        *>!.

To show that DNR2N(W + b) is bounded for all W on Cj and C2, consider

the integral

-L
cw nN+m(n - w)N-»+l(evW - 1)

dn,        m = 0, I, ... , N.
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For any fixed point W on Ci  or C2, the contour Cw has the points n —

0, b, W in its interior. We can replace Cw by the contours C3, XY = n,

Y > 0 and C4, XY = -n , Y < 0. Let J denote the above integral along the

curve C3, n = X + iY, XY = n , Y>0, dY = (-n/X2)dX. Then,

(4.12)

|/|<W     (*2 + £i) \X + iY-W\-N+m-'e-xll"(^^-\dX.

Note that (X2 + n2/X2) > 2n. Let d denote the distance function. If W
is on Ci, then by symmetry, d(W, C3) > d(-b, C3 U C4). Since -b £ il"
and d(il", C3 u C4) = y > 0, it follows that rffV, C3) > 7. If W is on
C2, let W7 = î, -a < í < 00, then \X + iY - W\2 > n2/X2. Therefore, for

m = 0, 1,...,7V>2,

(4.13)   j/| < M'(m)Ç £±1 L-N+m-i + (^y+l'm\e-x^dx

<M"(m, y).

A similar bound holds for the integral along C4. Since \ is bounded for

z £ il, by (4.11), |7| < M'"(m, y) for some constant M'". This completes

the proof.
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