ON SOME SUMMABILITY FACTORS OF INFINITE SERIES

W. T. SULAIMAN

(Communicated by Andrew M. Bruckner)

ABSTRACT. A new theorem concerning some summability factors of infinite series is proved. Other results, some of them known, are also deduced.

1. Introduction

Let $\sum a_n$ be an infinite series of partial sums s_n . Let σ_n^{δ} and η_n^{δ} denote the *n*th Cesàro mean of order $\delta(\delta>-1)$ of the sequences $\{s_n\}$ and $\{na_n\}$ respectively. The series $\sum a_n$ is said to be absolutely summable (C,δ) with index k, or simply summable $|C,\delta|_k$, $k\geq 1$, if

$$\sum_{n=1}^{\infty} n^{k-1} |\sigma_n^{\delta} - \sigma_{n-1}^{\delta}|^k < \infty,$$

or equivalently

$$\sum_{n=1}^{\infty} n^{-1} |\eta_n|^k < \infty.$$

Let $\{p_n\}$ be a sequence of positive real constants such that

$$P_n = \sum_{v=0}^n p_v \to \infty$$
 as $n \to \infty$ $(P_{-1} = p_{-1} = 0)$.

The series $\sum a_n$ is said to be summable $|\overline{N}, p_n|_k$, $k \ge 1$, if

$$\sum_{n=1}^{\infty} (P_n/p_n)^{k-1} |T_n - T_{n-1}|^k < \infty \qquad (Bor [1]),$$

where

$$T_n = P_n^{-1} \sum_{v=0}^n p_v s_v .$$

If we take $p_n=1$, then $|\overline{N}, p_n|_k$ summability is equivalent to $|C, 1|_k$ summability. $|\overline{N}, p_n|_1$ is the same as $|\overline{N}, p_n|$. In general, the two summability methods $|C, \delta|_k$ and $|\overline{N}, p_n|_k$ are not comparable.

Received by the editors February 7, 1990.

1991 Mathematics Subject Classification. Primary 40G99.

Here we give the following new definition: Let $\{\varphi_n\}$ be any sequence of positive real constants. The series $\sum a_n$ is said to be summable $|\overline{N}, p_n, \varphi_n|_k$, $k \ge 1$, if

$$\sum_{n=1}^{\infty} \varphi_n^{k-1} |T_n - T_{n-1}|^k < \infty.$$

Clearly $|\overline{N}, p_n, P_n/p_n|_k = |\overline{N}, p_n|_k$, $|\overline{N}, p_n, 1|_1 = |\overline{N}, p_n|$, and $|\overline{N}, 1, n|_k = |C, 1|_k$. The following two results are due to Bor:

Theorem 1. Let $\{p_n\}$ be a sequence of positive real constants such that as $n \to \infty$

(1.1) (i)
$$np_n = 0(P_n)$$
,
(ii) $P_n = 0(np_n)$.

If $\sum a_n$ is summable, $|C, 1|_k$, then it is also summable $|\overline{N}, p_n|_k$, $k \ge 1$.

Theorem 2. Let $\{p_n\}$ be a sequence of positive real constants such that it satisfies (1.1). If $\sum a_n$ is summable $|\overline{N}, p_n|_k$, then it is also summable $|C, 1|_k$.

We prove the following:

Theorem 3. Let $\{p_n\}$, $\{q_n\}$, and $\{\varphi_n\}$ be sequences of positive real constants such that $\{\varphi_nq_n/Q_n\}$ is nonincreasing. Let t_n denote the (\overline{N}, p_n) -mean of the series $\sum a_n$. If

$$\begin{split} \sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^k \left(\frac{q_n}{Q_n}\right)^k \varphi_n^{k-1} |\varepsilon_n|^k |\Delta t_{n-1}|^k < \infty \,, \\ \sum_{n=1}^{\infty} \varphi_n^{k-1} |\varepsilon_n|^k |\Delta t_{n-1}|^k < \infty \,, \end{split}$$

and

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^k \varphi_n^{k-1} |\Delta \varepsilon_n|^k |\Delta t_{n-1}|^k < \infty,$$

then the series $\sum a_n \varepsilon_n$ is summable $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$, where $|\overline{N}|$ is summable $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$ is summable $|\overline{N}|$, $|\overline{N}|$, where $|\overline{N}|$ is summable $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$ is summable $|\overline{N}|$, $|\overline{N}|$, where $|\overline{N}|$ is summable $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$, where $|\overline{N}|$ is summable $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$, $|\overline{N}|$, where $|\overline{N}|$ is summable $|\overline{N}|$, $|\overline{N}|$

2. Proof of Theorem 3

Let T_n be the (\overline{N}, q_n) -mean of the series $\sum a_n \varepsilon_n$. Then we have

$$T_n = \frac{1}{Q_n} \sum_{v=0}^n q_v \sum_{r=0}^v a_r \varepsilon_r = \frac{1}{Q_n} \sum_{v=0}^n (Q_n - Q_{v-1}) a_v \varepsilon_v.$$

Hence

$$T_n - T_{n-1} = \frac{q_n}{Q_n Q_{n-1}} \sum_{v=1}^n Q_{v-1} a_v \varepsilon_v.$$

Abel's transformation gives

$$T_{n} - T_{n-1} = \frac{q_{n}}{Q_{n}Q_{n-1}} \left\{ \sum_{v=1}^{n-1} \left(\sum_{r=1}^{v} P_{r-1} a_{r} \right) \Delta (P_{v-1}^{-1} Q_{v-1} \varepsilon_{v}) + \left(\sum_{r=1}^{n} P_{r-1} a_{r} \right) P_{n-1}^{-1} Q_{n-1} \varepsilon_{n} \right\}$$

$$= \frac{q_{n}}{Q_{n}Q_{n-1}} \sum_{v=1}^{n-1} \left\{ -Q_{v-1} \varepsilon_{v} \Delta t_{v-1} + \frac{P_{v-1}}{p_{v}} q_{v} \varepsilon_{v} \Delta t_{v-1} - \frac{P_{v-1}}{p_{v}} Q_{v} \Delta \varepsilon_{v} \Delta t_{v-1} \right\}$$

$$- \left(\frac{P_{n}}{p_{n}} \right) \left(\frac{q_{n}}{Q_{n}} \right) \varepsilon_{n} \Delta t_{n-1}$$

$$= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}, \text{ say }.$$

To prove the theorem, it is sufficient, by Minkowski's inequality, to show that

$$\sum_{n=1}^{\infty} \varphi_n^{k-1} |T_{n,r}|^k < \infty, \qquad r = 1, 2, 3, 4.$$

Applying Hölder's inequality,

$$\begin{split} &\sum_{n=2}^{m+1} \varphi_{n}^{k-1} |T_{n,1}|^{k} = \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \left(\frac{q_{n}}{Q_{n}Q_{n-1}} \right)^{k} \left| \sum_{v=1}^{n-1} - \frac{Q_{v-1}}{q_{v}} q_{v} \varepsilon_{v} \Delta t_{v-1} \right|^{k} \\ &\leq \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \left(\frac{q_{n}}{Q_{n}} \right)^{k} \frac{1}{Q_{n-1}} \\ &\qquad \times \sum_{v=1}^{n-1} \left(\frac{Q_{v}}{q_{v}} \right)^{k} q_{v} |\varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k} \left\{ \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_{v} \right\}^{k-1} \\ &\leq 0(1) \sum_{v=1}^{m} \left(\frac{Q_{v}}{q_{v}} \right)^{k} q_{v} |\varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k} \sum_{n=v+1}^{m+1} \left(\frac{\varphi_{n}q_{n}}{Q_{n}} \right) \frac{q_{n}}{Q_{n}Q_{n-1}} \\ &\leq 0(1) \sum_{v=1}^{m} \varphi_{v}^{k-1} Q_{v} |\varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k} \sum_{n=v+1}^{m+1} \frac{q_{n}}{Q_{n}Q_{n-1}} \\ &\leq 0(1) \sum_{v=1}^{m} \varphi_{v}^{k-1} |\varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k} , \end{split}$$

$$\begin{split} \sum_{n=2}^{m+1} \varphi_{n}^{k-1} |T_{n,2}|^{k} &= \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \left(\frac{q_{n}}{Q_{n}Q_{n-1}} \right)^{k} \left| \sum_{v=1}^{n-1} - \frac{P_{v-1}}{P_{v}} q_{v} \varepsilon_{v} \Delta t_{v-1} \right|^{k} \\ &\leq \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \left(\frac{q_{n}}{Q_{n}} \right)^{k} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_{v}}{P_{v}} \right)^{k} q_{v} |\varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k} \left\{ \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} q_{v} \right\}^{k-1} \\ &\leq 0(1) \sum_{v=1}^{m} \left(\frac{P_{v}}{P_{v}} \right)^{k} q_{v} |\varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k} \sum_{n=v+1}^{m+1} \left(\frac{\varphi_{n}q_{n}}{Q_{n}} \right)^{k-1} \frac{q_{n}}{Q_{n}Q_{n-1}} \\ &\leq 0(1) \sum_{v=1}^{m} \varphi_{v}^{k-1} \left(\frac{P_{v}}{P_{v}} \right)^{k} \left(\frac{q_{v}}{Q_{v}} \right)^{k-1} q_{v} |\varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k} \sum_{n=v+1}^{m+1} \frac{q_{n}}{Q_{n}Q_{n-1}} \\ &\leq 0(1) \sum_{v=1}^{m} \varphi_{v}^{k-1} \left(\frac{P_{v}}{P_{v}} \right)^{k} \left(\frac{q_{v}}{Q_{v}} \right)^{k} |\varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k}, \\ &\sum_{n=2}^{m+1} \varphi_{n}^{k-1} |T_{n,3}|^{k} = \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \left(\frac{q_{n}}{Q_{n}Q_{n-1}} \right)^{k} \left| \sum_{v=1}^{n-1} - \frac{P_{v-1}}{P_{v}} \frac{Q_{v}}{q_{v}} q_{v} \Delta \varepsilon_{v} \Delta t_{v-1} \right|^{k} \\ &\leq \sum_{n=2}^{m+1} \varphi_{n}^{k-1} \left(\frac{q_{n}}{Q_{n}} \right)^{k} \frac{1}{Q_{n-1}} \sum_{v=1}^{n-1} \left(\frac{P_{v}}{P_{v}} \right)^{k} \left(\frac{Q_{v}}{q_{v}} \right)^{k} q_{v} |\Delta \varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k} \\ &\times \left\{ \frac{1}{Q_{n-1}} \sum_{v=1}^{m-1} q_{v} \right\}^{k-1} \\ &\leq 0(1) \sum_{v=1}^{m} \varphi_{v}^{k-1} \left(\frac{P_{v}}{P_{v}} \right)^{k} \left(\frac{Q_{v}}{q_{v}} \right)^{k} |\Delta t_{v-1}|^{k} \sum_{n=v+1}^{m+1} \frac{q_{n}}{Q_{n}Q_{n-1}} \\ &\leq 0(1) \sum_{v=1}^{m} \varphi_{v}^{k-1} \left(\frac{P_{v}}{P_{v}} \right)^{k} |\Delta \varepsilon_{v}|^{k} |\Delta t_{v-1}|^{k}, \text{ and} \\ &\sum_{n=1}^{m} \varphi_{n}^{k-1} |T_{n,4}|^{k} = \sum_{n=1}^{m} \varphi_{n}^{k-1} \left| - \left(\frac{P_{n}}{P_{n}} \right) \left(\frac{q_{n}}{Q_{n}} \right) \varepsilon_{n} \Delta t_{n-1} \right|^{k} \\ &\leq 0(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} \left| - \left(\frac{P_{n}}{P_{n}} \right) \left(\frac{q_{n}}{Q_{n}} \right) \varepsilon_{n} \Delta t_{n-1} \right|^{k} \\ &\leq 0(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} \left| - \left(\frac{P_{n}}{P_{n}} \right) \left(\frac{q_{n}}{Q_{n}} \right) \varepsilon_{n} \Delta t_{n-1} \right|^{k} \\ &\leq 0(1) \sum_{n=1}^{m} \varphi_{n}^{k-1} \left| - \left(\frac{P_{n}}{P_{n}} \right) \left(\frac{q_{n}}{Q_{n}} \right) \varepsilon_{n} \Delta t_{n-1} \right|^{k} \end{aligned}$$

This completes the proof of the theorem.

3. APPLICATIONS

Corollary 1. If

(3.1)
$$(i) p_n Q_n = 0(P_n q_n),$$

$$(ii) P_n q_n = 0(p_n Q_n),$$

then the series $\sum a_n$ is summable $|\overline{N}, q_n, \varphi_n|_k$, whenever it is summable $|\overline{N}, p_n, \varphi_n|_k$, $k \ge 1$, and $\varphi_n = 0(\phi_n)$.

The proof follows from Theorem 3 by putting $\varepsilon_n = 1$.

Corollary 2. If (3.1) is satisfied, then the series $\sum a_n$ is summable $|\overline{N}, q_n|_k$ whenever it is summable $|\overline{N}, p_n|_k$, $k \ge 1$.

The proof follows from Corollary 1 by putting $\varphi_n = Q_n/q_n = 0(P_n/p_n)$.

Corollary 3 (Theorems 1 and 2). If (1.1) is satisfied, then the series $\sum a_n$ is summable $|C, 1|_k$ if and only if it is summable $|\overline{N}, p_n|_k$, $k \ge 1$.

Proof. (\Rightarrow) follows from Corollary 2 by putting $p_n = 1$. (\Leftarrow) follows from Corollary 2 by putting $q_n = 1$.

Corollary 4. If

(i)
$$\frac{P_n q_n}{p_n Q_n} \varepsilon_n = 0(1),$$

(ii)
$$\varepsilon_n = 0(1)$$
,

(iii)
$$\frac{P_n}{p_n} \Delta \varepsilon_n = 0(1)$$
,

then the series $\sum a_n \varepsilon_n$ is summable $|\overline{N}, q_n, \varphi_n|_k$, whenever $\sum a_n$ is summable $|\overline{N}, p_n, \varphi_n|_k$, $k \ge 1$.

The proof follows from Theorem 3.

Corollary 5. If

(i)
$$\varepsilon_n = 0(1)$$
,
(ii) $\Delta \varepsilon_n = 0(1/n)$,

then the series $\sum a_n \varepsilon_n$ is summable $|C, 1|_k$, whenever $\sum a_n$ is summable $|C, 1|_k$, $k \ge 1$.

The proof follows from Corollary 4 by putting $p_n = q_n = 1$, $\varphi_n = n$.

ACKNOWLEDGMENTS

The author is very grateful to the referee for his interesting comments.

REFERENCES

- H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1985), 147– 149.
- 2. ____, A note on two summability methods, Proc. Amer. Math. Soc. 98 (1986), 81-84.

Department of Applied Sciences, College of Technological Studies, P. O. Box 42325, 70654 Kuwait