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Abstract. Let T be a bounded linear operator of norm 1 on a Hubert space

H such that T" = 0 for some n > 2 . Then its numerical radius satisfies

w(T) < cos jj^-p: and this bound is sharp. Moreover, if there exists a unit

vector i, € H such that |(r^|{)| = cos t^t\-) >tnen T has a reducing subspace

of dimension n on which T is the usual «-shift. The proofs show that these

facts are related to the following result of Fejer : if a trigonometric polynomial

f<fi) = H"kZ-n+l faeike is positive, one has \fx\ < Jbcos^yy ; moroever,

there is essentially one polynomial for which equality holds.

Let H be a complex Hubert space, possibly finite dimensional, and let T be

a (bounded linear) operator on H. The numerical radius of T is

tiz(r) = Sup{|(r<*|c;)| :<*€#,}

where Hx denotes the unit sphere in IT. It is well known that

r(T)<wiT)<\\T\\

where r(P) and ||P|| denote respectively the spectral radius and the norm of

T. In particular tzj(P) = ||r|| whenever T is normal. Also, it follows from

polarization that

wiT)>$\\T\\.
For all this and much more, see [Hal, §18 ] and [Ha2, Chapter 17]. The subject

of this paper is the comparison of w ( T) with ||P|| when T is nilpotent, namely

when T" = 0 for some integer n > 2. We show in this case that w ( T) <

ll^llC0S^7T ' an(* eQuality holds for the n-shift on C" (cf. Theorem 1). We

also show how this is related to a result of Fejer about trigonometric polynomials

of the form

/(0)=    £   fkeike

k=-n+l

with fk g C. Such a polynomial is positive if /(Ö) > 0 for all 6 c R. The com-
putation of the numerical radius for the «-shift implies that \f\ < /Ocos^y

(cf. Theorem 2).
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Theorem 1. Let T be an operator on H such that T" = 0 for some n > 2.

Í1 ) One has

w{T) <\\T\\ cos-i-r
ZZ + 1

and equality holds when T is the n-dimensional shift on the standard hermitian
space C".

(2) Suppose morover that \\T\\ = 1.  Suppose that there exists a unit vector

Ç e Hx   with  \{TÇ\Ç)\ = cos «-n (//" dim H < oo, this holds if and only if

wiT) = cos jfa •) Let Vç be the linear span of {£,, T¿¡, ..., Tn~xc;} . Then V^

is an n-dimensional subspace of H which is reducing for T, and the restriction

of T to V^ is unitarily equivalent to the n-dimensional shift on C .

The proof uses inequalities on positive matrices (see Proposition 3), namely

on matrices ß = ißij)i<ij<n G Af„(C) such that ißC\C) > 0 for all t\ c C" ;
for such a matrix, we write ß > 0.

From now on, n is an integer, n > 2. For the proof of Theorem 1 we will

need the following computation. (This is probably standard; see in particular

[DH].)

Proposition 1. Let S be the n-dimensional shift on C" , given by the matrix

S =

/O 0 0
1 0 0
0    1    0

0   0
Vo  o

0  o\
0   0
0   0

0 0
1 o)

and set & = ((-^j) ^ sin {fa ) G C" . Then
VV        ' / l<k<n

(1) |S| = 1,
(2) wiS) = cos^,

(3) for i g C"  with 11(11 = I, one has (Sf|f) = cos^  if and only if
Ç = e'tÇo for some q>cR.

Proof. The first claim is obvious.

For any operator T on any Hubert space H, one has

wiT) = sup{|íc(e'e(rcl|c;))| : 6 c R and ( e Hx}

= \ sup{|((<?,er + e_,'flr*)i|()| : 0 G R and f G Hi}

%sap{\\eieT + e-'eT*\\:6e

Set now

A = S + S* =

/O 1
1 O
O    1

0    0    0
Vo o o

0   0\
o o
o o

0 1

1 0/
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If Did) denotes the unitary diagonal matrix with entries eie , e2,e, ... , en,e ,

one has
Did)*íeieS + e-ieS*)DÍ6) = A

for all 9 € R. Consequently wiS) = ±\\A\\.
For k = I, ... , n , let & G C" be the vector with coordinates

kn .    2kn .    nkn
sin ——r ,     sin ——-    , ...,     sin

n + l' n + l     "" n+l'

One has

AÇk = 2cos ( ̂ -j- J & ,        k = 1, ... ,n.

(This computation appears already in [Lag, Nos. 19-20].) Consequently

cos (-r 1 ,wiS) = h\A\\=l- sup
L L Kk<n

kn
2 cos

.ZZ+ 1

so that Claim (2) holds. Observe that

n+ 1

»""-¿-^(sti)-
so that ío = íillíiH~1.

Choose now {eC" with ||(|| = 1. As (íi||^||_1)i</t<n is an orthonormal

basis of C", there are complex numbers cx, ... , c„ with X]lc*:l2 = 1 an(i

Í - ZckikKkW-1 ■ Assume that (S£|{) = cos ¡¡fj . Then

cos^TT = 5(^^ = S|Cfc|2cos^TT-
fc=i

This implies that |ci| = 1 and 6*2 = • • • = c„ = 0, so that ij = cnJo • This shows

(3).  D

Notation. If ß = (/?¡ j)i<¡ j<« G M„(C) is any given matrix, and if k, I are

positive integers with max{/c, /} > n + 1, we set /?/, / = 0.

Lemma 1. Consider an operator T on H such that T" = 0 ¿zzz¿i ||P|| < 1, and

a unit vector £ g Hx . Define

ßij^iT'-^p-^),        i,j>l.

Then the matrix ( ßi, j - ßi+ i,j+i)i<¡j<n is positive.

Proof. Consider complex numbers cx, ... , cn and set

n = J2ckTk~lc:    .
k-l

One has 1 - TT* > 0 , because ||P|| < 1 , and thus

((1 - T*T)n\n) = ¿ acjißij-ßl+xj+x)>0.
',7 = 1

As this holds for any choice of cx, ... ,cn, the lemma follows. D
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Definition. With S  and (o   as in Proposition 1, we define a matrix  a =

{oti,j)i<ij<n by

al,J = iS'-^o\SJ-^o).

Observe that ax t x = \\c¡o\\2 = 1, and that

n
ax 2 — co i = cos--

n + l

by Proposition 1.3. Observe also that (o,-j - <*i+ij+i)i<ij<n > 0 by Lemma

1.

Proposition 2. Let ß = ißij)i<ij<n G M„ÍC) be a matrix such that ßXyX = 1.
Assume that the matrix y c Af„(C) defined by

Yij = ßij - ßi+i,j+i

is positive. Then

(1) |A,2|< «1.2 = 0»^.

(2) If moreover ßx2 = ai, 2 , then ß = a .

Proof. From the definition of y, one has

ßij = Yij + Yi+i.j+i +■■■ + Yi+k,j+k

with k = min{zz - i, n - j}. In particular

(I) trace!» = j?i,i = l

and ßx> 2 = y 1,2 + Yi, 3 H-Y Yn-i,n • As y is positive, y, ), is real nonnegative

for j = 1.n and |y¡ j|2 < Yi,iYf,j f°r i, ./'= 1,...,«. Consequently

(ii)        |jSi>2l<(yi,i)1/2(y2,2)1/2 + --- + (yB-i,»-i)1/2()'n,»)1/2  ■

Let n G C" be the vector with coordinates ÍYi,i)l¡2, ■■■ , ÍYn,n)l/2 ■ Then

\\n\\2 = 1 by (I) and \ßlt%\ < ÍSn\n) by (II), so that Claim (1) follows by
Proposition 1.

Recall that a state on M„i<C) is a linear form <y on M„(C) such that

c«(l) = 1 and coiT) > 0 whenever P > 0. Each positive matrix <5 G A/„(C)

with trace(r5) = 1 defines a state co¿ by cogiT) = trace(Pr5). In particular, the

matrix y defines a state w,, and one has

n n

°>yis) = ]C 5«'./ft.z = Yl JV.J+J = Ä.2 •
<,/-! ¿=I

Given vectors Ci, C2 G C", we denote by Ci ® £2  the matrix of the linear

endomorphism t\ >-> (£|Í2)íi   of C .   Let Ai > A2 > ••• > A„ > 0 be the
eigenvalues of y and choose a basis (í7^)i<^<m of corresponding eigenvectors,

so that
n

y = ^hnv®Jh
v = l

and
n

Sy = ^XvSnu <g> %,.

v=l
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The hypothesis for Claim (2) reads now

«

cOyiS) = trace(S» = ^kviSnv\nv) = cos- .

i/=i

As YH=i ^-v = trace(y) = 1, it follows from Proposition 1 that

k\ = 1,        Xi = ••• =X„ = 0,

and that rjx = el^t\o for some <p G R . This can be expressed as

Y = ¿Jo ® ¿Jo •

Denote by Ç0l, ... ,Çfi the coordinates of ¿Jo . One has

where k = min{zz - i, n - j} = n - max{z, j}.   But ¿Jq = £o+1_p  for all

p c {I, ... , n} and

a      _ pn+l-ipn+l-j  ,  sn-iien-j .        ,   emax{i,y}-i+l »:max{i ,j}-j+l
Pi,j—Ço        "»0 "1"<»0    '»O      +-.. + Í0 *=0

o/=   J2   (tf"1«*^-1«
/c=max{;,y}

= (5'-1&|^-1&>=«iJ

for all i, j G {1,..., n).   D

Lemma 2. Le/ P /3¿? ¿zzz operator on H such that \\T\\ = 1 ¿zzz¿i T" = 0, and

assume that there exists a unit vector £, g Hx such that

(T{|í) = cos-   :
n + 1

Define V^ to be the subspace of H spanned by Ç, TÇ, ... , P"_1¿j. Then

(1) (P)'-1^ 6 V( for k= 1, ... , zz.
(2) Vç is a reducing subspace for T.

Proof. Lemma 1 and Proposition 2 imply that

(III) iT'-lC\p-li) = {S'~l Salseo)

for all i, j c {I, ... , n} , and in particular V^ is isometricly isomorphic to the

span of ¿Jo, St\o, ... , S"~'¿Jo , which is all of C" , so it follows that V^ is of
dimension n .

Define ß G M„(C) by ßu = iiT*y-lÇ\{T*y-lÇ). Lemma 1 and Proposi-
tion 2 imply also that

(IV) ß = a

and in particular that ||(P*)'-'£|| = (a,,,)1/2 for i = 1,..., n.

Let P be the orthogonal projection from /í onto 1^. Consider some k c

{1, ... , zz}, and let cx, ... , c„ be the (uniquely defined) complex numbers

such that
PiT*)k-li = cx4 + c2n + --- + cnTn-li.
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As (PI/_1¿J)i<i.<« is a basis of V( (though not an orthonormal one!) these cv 's

can be written as functions of the numbers

(Çrf-ii\Ti-iQ   and   ip-l£\p-li),        i,j=l,...,n.

But (IV) shows that

HT*)k-^\r-^) = HT*)k+i-2m = iis*)k-lio\s'-li0)

for i = I, ... , n and (III) reads

(jt-iQTJ-iQ = iSi-lto\SJ-lto)

for i, j = I, ... , n . It follows that the coordinates of (S"*)*-'¿Jo with respect

to the non-orthogonal basis ¿Jo, ■%, ... , 5"_l¿Jo of C" are also cx, c2, ... , c„ ,

i.e.

(S*)¿-'¿Jo - c.cJo + c2SZo + ■■■ + cnS"-lZo,

hcn.cc

\\PiT*)k~lc;\\ = iks-)*-1^« = K,*)1/2 = ll(n*_1£ll.

Consequently (r*)fc_1¿J G Im(P) = V^ and this proves (1).

Define W¡¡ to be the linear span of ¿J, P*¿J, ... , (P*)"_1¿J. One checks as

for V( that W( has dimension n, and Claim ( 1 ) shows that W( c V( . Hence

W¡¡ = Vç. As V¡¡ [respectively W¡f\ is obviously invariant by T [resp. T*], it

follows that Vç is invariant by T and T*. D

Proof of Theorem 1. Let T be an operator on H such that Tn = 0. One may

assume that ||P|| = 1.

(1) Choose a vector ¿J G Hx and define ß c M„(C) by

ßij = iTi-^\p-li).

By Lemma 1 and Proposition 2.1, one has \ßx,2\ < cos^r ■ As this holds for

all ¿J G Hx, this shows that wiT) < cos -^ .

(2) By hypothesis, there exist ¿J G Hx and 6 c R such that (P¿J|¿J) =
ew cos ^y . Let Vt be the linear span of ¿J, P¿J, ... , P"-'cJ.

Define V = e~'eT. Then V$ is a reducing subspace for V by Lemma 2

and the restriction of V to V( is unitarily equivalent to the zz-dimensional

shift S by Proposition 2. Hence V¡ is reducing for T and the restriction of

T to Vi is unitarily equivalent to ewS. But Did)eieSDid)* = S if P>(0) is
the unitary diagonal matrix defined in the proof of Proposition 1, so that the

proof is complete. D

From Theorem 1, it is easy to deduce the following 1915 result of L. Fejer

(see [PS, Problem VI.52]). We are grateful to J. Steinig who brought Fejer's

result to our attention.

Theorem 2. Consider a positive integer n > 2 and a positive trigonometric poly-

nomial

f(e)-  E Aeike
k=-n+l

of degree at most n - 1. Assume that f # 0, so that in particular fo > 0.
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( 1 ) One has \fx\ < focos -¡fa, and the constant cos jfa is the best possible
one.

(2) Suppose moreover that \f\= fo cos ^_ . Then

fid) = fo\giO + W)\2   foralldcR

where g is defined by

fc=0

and where ip = argif ).

Proof. As / ¿ 0 and /(0) > 0 for all 6 G R, one has

fo = ̂ ffiB)de>0,

and there is no loss of generality if we assume that fo = 1. A theorem of

Fejer and Riesz [Rud, Theorem 8.4.5] shows that there exists a trigonometric

polynomial g(0) = J^o Skeike such that

f{e) = \gíd)\2=  ¿ (Eft^y*"

for all 6 cR, where the second summation is over p , q c {0, I , ... , n - 1}

with p — q = k . One has in particular

n-l

(V) EM2 = 1  and fi = (Si\i)
p=0

where z; G C" is the unit vector with coordinates go, ... , gn-i ■ Thus \f\ <

wiS) = cos^-r by Proposition 1.2.

Suppose now that \f \ = cos -^ . Upon replacing / by the polynomial

6 i-> fid - ß) for some ß G R, one may assume that f = cos ¡^ • It follows

from Proposition 1.3 that n = ¿?'^¿Jo for some <p c R. There is no change in

(V) if we replace g by e~l<^g, so that we may assume that n = ¿J0 . But then

g has precisely the form given in Theorem 2.2.  D

Remarks, (a) Let T be as in Theorem 1 and such that ||P|| = 1 . For each

C G Hx and 6 G R, set

{1 if k = 0,

(7*C|C)     if/c>0,

<qpi*iç)  if /c < o,

and
n-l

/<(0)= E /c,**'™-
fe=-«+i
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Set also

X = 1 + J2üeieT)k + ie-i6T*)k

and

Then

k>i

= il-ewT)~1 +(1 -e~ieT*)-{ - 1

= (i _e-'eT*)-l{\ - e-'°T* + 1 - e'eT

-(1 -e~ieT*)il -eieT)}il -ewT)~x

= (1 -e~ieT*)-l{l - T*T}il-eieT)~l

r, = (1 -ei9T)-lC

frie) = iXQO = iil-T*T)n\t1)>0

because ||P|| = 1 . Using now Fejer's Theorem 2.1, we see that

n
|(PC|C>l<cos

n + 1

for all C G Hx . This provides a new proof of the inequality in Theorem 1.1.

(b) Assume now that zz > 3. For each t c [0, 1 ], set

Sit) =

(0
1
0

0   0   0
\0   0   0

0
0
0

0\
0
0

0   0
/    0/

CMniC)

and let wit) be the numerical radius of Sit). One has ||5(i)|| = 1 for all

t C[0, 1] . One has also ttf(l) = cos^y and iu(0) = \ . As wit) is continuous

in T (see [ Ha2, Problem 175]), the set of possible numerical radii of nilpotent

operators of norm 1 of order at most zz is [j , cos ^r].

On the other hand, let T be an operator of norm 1 on a finite dimensional

Hilbert space H (or more generally on a Hubert space in which there exists a

unit vector ¿J such that ||P¿J|| = 1 ), and assume that wiT) = \ . Then it is

known that T has a reducing subspace of dimension 2 on which it is unitarily

equivalent to the 2-shift. (See [WC]; we are grateful to A. Sinclair who made

us aware of this.)

For n > 3, let /„ be the set of those positive real numbers t for which

there exists an operator T acting on a finite dimensional Hilbert space with the

following properties : t = wiT), \\T\\ = 1, T" = 0, Tn~l ^ 0, and T is
irreducible (no nontrivial reducing subspace). The two facts just above show

that /„»Ij.cosjjjfr].
(c) Let Sit) and wit) be as above, now with 0 < t < 1. It is easy to check

that wit) < cos^y . Let (i„)„>i be a strictly increasing sequence of positive

numbers converging to 1. Consider an operator on an infinite dimensional

Hilbert space which is the orthogonal sum of the 5(rv)'s. Such an operator

shows that the hypothesis that T attains its numerical radius cannot be omitted

in Claim (2) of Theorem 1.
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(d) We have illustrated one more appearance of the ubiquitous sequence

( cos- )

Its recent popularity is due to the work of V. Jones on index for subfactors and

all that [Jon], but it appears in many other domains, such as the elementary

geometry of regular polygons [Cox, Formula 2.84], graph theory or Fuchsian

groups [GHJ], to mention but a few.

The second author wishes to note that the original idea of this paper is due

to the first author. The paper itself was written up while we were both enjoying

the hospitality of the Mittag-Leffler Institute during the autumn 1988. We are

grateful to A. Sinclair and J. Steinig for their useful comments.
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