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Abstract. We prove that if x is an infinite cardinal with *c<x = x, then

there is a cardinal-preserving notion of forcing that forces the existence of a

x-thin-tall superatomic Boolean algebra. Consistency for specific x , like cox ,

then follows as a corollary.

A superatomic Boolean algebra (abbreviated sBa) is a Boolean algebra in

which every subalgebra is atomic. It is known that a Boolean algebra B is su-

peratomic iff its Stone space S(B) is scattered. The Cantor-Bendixson process

for topological spaces can be transferred to the context of Boolean algebras, ob-

taining in this way a sequence of ideals, which are called the Cantor-Bendixson

ideals. Suppose that B is a Boolean algebra. Then, for every ordinal a, we

define by transfinite induction, the ideal Ia as follows. We put Iq = {0}. If

a = ß + I, let Ia be the ideal generated by Iß together with all b e B such

that b/Iß is an atom in B/Iß . If a is limit, Ia = \J{Iß : ß < a) . Then, B is
an sBa iff B = Ia for some a .

The height of an sBa B, ht(5), is the least ordinal a suchthat B/Ia is finite

(which means B = Ia+X ). For every a < ht(5) let wda(5) be the cardinality

of the set of atoms in B/Ia . The width of B , wd(5), is the supremum of

the wda(ß) for a < ht(5). Then, for every infinite cardinal x, B is called

x-thin-tall, if ht(fi) = x+ and wd(ß) = x.
The reader may find in [4] a wide list of results on superatomic Boolean

algebras, as well as a discussion of equivalent definitions and basic facts. In

particular, it is known that it is possible to construct an <y-thin-tall sBa with no

extra set-theoretic axioms. This was proved by Rajagopalan and, independently,

by Juhász and Weiss. On the other hand, Baumgartner and Shelah proved in [ 1 ]

that it is consistent with the axioms of set theory that there exists an sBa B such

that ht(ß) = co2 and wd(/?) = co. The argument employed by Baumgartner

and Shelah uses the fact that the forcing conditions are finite. However, if we

want to prove, for an uncountable cardinal x, that the existence of a x-thin-tall

sBa is consistent with the axioms of set theory, then we have to consider infinite

forcing conditions. In this paper we see a modification of the argument given in

[1], which permits us to deal with infinite forcing conditions. The set-theoretic
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terminology used here is taken from [1]. Our aim is to prove the following

result.

Theorem. If x is an infinite cardinal with x<>c = x, then there is a cardinal-

preserving notion of forcing that forces the existence of a x-thin-tall sBa.

Proof. Let x be an infinite cardinal with x<* = x. Note that this implies,

by König's lemma, that x is regular. We define a partial ordering Px , which

does not depend on any special function, and we prove that forcing with Px

preserves cardinals and adjoins a x-thin-tall sBa.

We put T = x+ x x and, for every a < x+, Ta = {a} x x. Px adjoins a

partial ordering < on T and a function i on the set {{s, t} : s, t c T} such
that the supremum of z{5, t} represents the meet s A t. We define Px as the

set of all p = ixp, <p , ip) satisfying the following conditions:

( 1 ) xp is a subset of T of cardinality < x.

(2) <p is a partial ordering of xp such that if s c Ta , t cTß , and s <p t,
then a < ß .

(3) ip: {{s, t}: s, t c xp} -» {x: x is a finite subset of xp} satisfies the
following:

(3.1) If 5 € Ta , t c Tß , and a< ß then:

(3.1.1) If 5 = t, then ip{s, t) = {s} .
(3.1.2) If 5 ¿ t and a = ß , then ip{s, t} = 0.
(3.1.3) If 5 <p t, then ip{s, t} = {s}

(3.1.4) If a < ß and s ¿tp t, then ip{s, t} Çxpn\J{Tr: r < a} .

(3.2) For every s, t e xp the following hold:

(3.2.1) If u c ip{s, t} , then u <p s, t.
(3.2.2) If v <p s, t, then there is a zz e ip{s, t} with v <p u.

Now we put p <x q iff xp D xq , <p\ xq =<q and ip \ {{s, t}: s, t c xq) =

if

Then proceeding in a way similar to that for [1, Theorem 7.1], one can prove

that if Px preserves cardinals, then Px adjoints a x-thin-tall sBa.

Our aim is to show that forcing with P„ preserves cardinals. Note that Px

is x-closed. Then, our purpose is to prove that Px satisfies the x+-chain con-

dition. Suppose on the contrary that there exists an antichain A of cardinality

x+ . For every p e A, we put yp = {a: xp n Ta ± 0}. Then, by the A-system

lemma (see [3, Theorem II. 1.6]), we may assume that the yp form a A-system

with kernel A. Since the cardinality of every yp is < x and, for all a, ß c A

with a < ß, the cardinality of ß - a is < x, we may also assume that A

is an initial segment of yp for every p c A. Then by thinning out A again

if necessary, we may suppose that there is an ordinal yO) < x such that the

order type of yp - A is y(1) for every p c A . Now we define y(0) = supremum

{a + 1 : a c A} , and y = (y(0) + y(1)) - y(0). Note that, since the cardinality

of y is < x, we may assume that yp n y = 0 for every p c A . Now, for ev-

ery p, q c A , we consider the unique order-preserving bijection npq : yp —» yq .

Then, since the cardinality of each xp is < x, we may suppose that npq lifts

to an isomorphism of xp with xq given by npqia, ß) = (7rM(a), ß). Finally

we may also assume that, for every p, q c A and s, t c xp , we have:

S <p t       iff 7lpqis) <q Tlpqit)
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and
lq{^pq{s), Kpqit)) = [npqiu): U £ ip{s , t}} .

Now we prove that the elements of A are all compatible. Let p, q c A. We

construct an r c Px such that r <x p and r <„ q. Let p: y —> (yp - A) and

P- y —* Í7q - A) the corresponding order-preserving bijections. For each a c y ,

we set

x<a> = {(a, ß) C Ta: ipia),ß)cxp} = {(a, ß) C Ta: (/¿(a), ß) C xq}.

Then we put

xr = Xp U xq U |J{x(Q) :aÉy}.

Now we make the following definitions:

x = IJ{*P n Ta : a c A} = \J{xq nTa:acA},
y = \J{x^:acy},

zi ={J{xPnTa: acyp-A},

z2 = [J{xqriTa: a£yq-A}.

Note that p and p lift to the isomorphisms of y with zx and y with z2,

respectively, given by pía, ß) = ípía), ß) and pía, ß) = ípía), ß). Then

we define <r as follows: s <r t iff s <p t or s <q t or one of the following

conditions holds:

(a) 5 e x, t ey, and 5 <p pit) ;

(b) s,tcy and pis) <p pit) ;
(c) s 6 y , t c zx, and pis) <p t ;

(d) s cy , t c z2, and /z(5) <? t.

We show that <r is a transitive order. Suppose that s <r t <r u. The cases

s, t, u c Xp and s, t, u e xq are obvious. If 5 G x, t c y, and u c zx, we

have that 5 <p pit) <p u, whence s <r u. Suppose that s, t c y and u c zx .
It follows that pis) <p pit) <p u, and hence s <r u . Now assume that s, t c y

and u c z2. Since pis) <p pit), we have npqípís)) <q npqípít)). But note

that npqípís)) = pis) and npqípít)) = pit). Therefore pis) <q p{t) <q u, and

so s <r u. The other cases are proved in a similar way.

Now we define i,. Let s, t c xr. If 5, / e xp , we put ir{s, t} = ip{s, t} .

If 5, t e xq , then ir{s, t} = iq{s, t} . If 5 e x and t e y, we set ir{s, t} =

ip{s, pit)}. If s,t c y, then ir{s, t} = iip{pis), pit)} n x) U {p~l{u): u c

iplpis), pit)} - x}. If 5 e y and t c zx , then z"r{-s, r} = ir{s, p~xit)}.

Analogously if s e y and t c z2, then z'r{5, t} = ir{s, p~xit)}. Finally, if

5 € zx and t c z2, we put zr{5, /} = z'r{/9_1(s), p~xit)}.

Note that z'r is well defined. For example, if s e zx , t e z2, and p~xis) =

p~xit), then ir{s, t} = {p~xis)} . On the other hand, it should be noted that if

s cy and t c zx , then ir{s, t} = iip{pis), t} nx) U {p~xiu): u c ip{pis), t} -

x}, and analogously, if s c y and t c z2, then ir{s, t} = íiq{pís), t} n x) U

{p~xiu): u e iq{pís), t}-x}.

In order to show that r = (xr, <r, ir) c Px, we must verify condition (3).

The easy proof of (3.1) is left to the reader. We prove condition (3.2.1). Let

5, t c xr and u £ ir{s, t} . The cases s, t £ xp and 5, t £ xq are obvious.

For the rest, we consider three cases.
Case 1. 5 £ x and t £ y. Then u £ ip{s, pit)}, and therefore u <p s, pit),

whence u <r s, t.
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Case 2. s, t £ y. If u £ x, then u £ ip{pis), pit)}, and hence u <p

pis), pit), whence u <r s, t.

If u £ y, then piu) £ ip{pis), pit)}, and so piu) <p pis), pit), which

implies u <r s, t.

If 5 € y and t £ zx , or s £ y and t £ z2, the considerations are similar to

those of Case 2.
Case 3. s £ zx and t £ z2. We have that zz € ir{p~xis), p~xit)} and then

by Case 2, u <r p~xis), p~xit). If zz € x , it is clear that u <r s, t. If u £ y,

we infer than piu) <p s and piu) <q t, which implies u <r s, t.

Now we check (3.2.2). Let us consider s, t £ xr and v <r s, t. The case

s £ x and t £ xp U xq is obvious. For the rest, we consider four cases.

Case 1. 5 £ x and t £ y . It follows that v <p s, pit), and thus there is a

u £ ip{s, pit)} = ir{s, t} such that v <r u.

Case 2. s,t £ y. First suppose that v £ x. Then v <p pis), pit), and

therefore there is a zz € ip{pis), pit)} such that v <p u. If u £ x, then

u £ ir{s, t}. And if u £ zx, we infer that v <r /?"'(«) and p~xiu) £ ir{s, t}.

Now suppose that v £ y. Then piv) <p pis), pit), and hence there is a

zz £ ip{pis), pit)} such that piv) <p u, whence v <r p~xiu) and p~xiu) £

ir{s, t} ■

The cases 5 e y, t £ zx and s £ y , t £ z2 can be verified by means of an

argument similar to the one given in Case 2.

Case 3. s, t £ zx . If v £ xp we are done. Then suppose that v £ y. It

follows that piv) <p s, t, and hence there is a zz e ip{s, t} such that piv) <p

u. But piv) <p u implies v <ru.

The case s, t £ z2 is similar to Case 3.

Case 4. s £ zx and t £ z2. It is easy to infer that v <r p~xis), p~xit), and

then by Case 2, there is a zz e ir{p~xis), /z_1(i)} = ir{s, t} such that v <r u.

This completes the verification of (3) and the proof that Px has the x+-chain

condition.

Remarks. (1) Juhász and Weiss proved in [2] that, for every ordinal a < co2,

there exists an sBa Ba such that ht(/?a) = a and wd(/?Q) = co. Then, by using

the well-known fact that there is an almost disjoint family of 2W subsets of

co, we obtain that ] CH implies the existence of an sBa with exactly co atoms

and height co2. On the other hand, since the partial ordering Pœi is countably

closed, we infer that forcing with PCt)l preserves CH (see [3, Theorem VII.6.14]),

and thus we obtain as a corollary that the existence of an cox -thin-tall sBa is

consistent with ZFC+CH.
(2) Suppose that x, X are infinite cardinals such that x<x = x and x < X.

Then, it is consistent with the axioms of set theory that there exists an sBa B

such that ht(/?) = x+ 1 , wd„(5) = x for every a < x and wd„(5) = X. This

result can be proved by means of an argument similar to the one given before.

However, if we assume that the ground model satisfies GCH, it is easier to show

this fact, if we use the argument given in [5, Theorem 9]. More precisely, let

us consider a cardinal-preserving generic extension N such that, in N, 2* > X

and 2*° = x£ for every cardinal x0 < x (see [3, Theorem VII.6.17]). Then

in N, the complete binary tree of height x is a x-Canadian tree with at least

X paths. But note that the existence of such a tree implies the existence of the

required sBa.
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