## REGULARITY AND $\sigma$ -ADDITIVITY OF STATES ON OUANTUM LOGICS

## MIRKO NAVARA

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. In 1977, Béaver and Cook [1] introduced the notion of regularity of states on quantum logics. They presented a generalization of Alexandroff theorem: each regular finitely additive state on a quantum logic is countably additive. Recently, Dvurečenskij, Neubrunn, and Pulmannová [2] observed an incorrectness in the original proof and doubted thus the validity of the result. We construct here a counterexample.

Let us briefly recall necessary notions (see [1] and [2]). (More details on quantum logics can be found in [4] and [5].)

By a (quantum) logic we mean an orthomodular poset  $\mathcal{L}$ . It is called  $\sigma$ -orthocomplete if each countable orthogonal sequence has a join in  $\mathcal{L}$ . A state on a quantum logic  $\mathcal{L}$  is a mapping  $\omega: \mathcal{L} \to [0, 1]$  such that (i)  $\omega(1) = 1$ , (ii)  $\omega(a \vee b) = \omega(a) + \omega(b)$  whenever  $a \perp b$ . A state  $\omega$  is called countably additive if  $\omega(\bigvee_{n \in N} a_n) = \sum_{n \in N} \omega(a_n)$  whenever  $\{a_n\}_{n \in N}$  is an orthogonal sequence in  $\mathcal{L}$  having a join.

Suppose that  $\mathscr P$  is a subset of  $\mathscr L$ . A state  $\omega$  on  $\mathscr L$  is called  $\mathscr P$ -regular if for each  $\varepsilon>0$  and each  $q\in\mathscr L$  there exists  $p\in\mathscr P$  with  $p\leq q$  and  $\omega(q\wedge p')<\varepsilon$  (here p' means the complement of p). The set  $\mathscr P$  is called finitely coverable if for each  $p\in\mathscr P$  and each sequence  $\{p_n\}_{n\in N}\subseteq\mathscr P$  such that  $\bigvee_{n\in N}p'_n$  exists and  $p\leq\bigvee_{n\in N}p'_n$  there exists a  $k\in N$  satisfying  $p\leq\bigvee_{n\leq k}p'_n$ .

The theorem of Béaver and Cook we want to consider was formulated as follows: Let  $\mathscr L$  be a  $\sigma$ -orthocomplete quantum logic and let  $\mathscr P$  be a finitely coverable subset of  $\mathscr L$  containing the meet of any sequence in  $\mathscr P$ . Then each  $\mathscr P$ -regular state on  $\mathscr L$  is countably additive.

In [2] the authors showed that the original proof of Béaver and Cook was applicable only for subadditive states. They also proved that the Béaver-Cook theorem was not valid for quantum logics which were not  $\sigma$ -orthocomplete. They left open the validity of the original result. As we shall show here, there is a counterexample to the Béaver-Cook theorem. The method for obtaining it is however quite different from that of [2].

Let us start with a finite (lattice) logic  $\mathcal{S}$  admitting no states (see e.g. [3]). Let us take a trivial logic  $\mathcal{F} = \{0_{\mathcal{T}}, 1_{\mathcal{T}}\}$ . (We use indices following the

Received by the editors November 29, 1990.

1991 Mathematics Subject Classification. Primary 28A60, 81P20.

Key words and phrases. Quantum logic, regular states, countable additivity.

symbols  $0, 1, \leq, \wedge, \vee$ , etc. in order to distinguish which logic we refer to.) As known, the direct product  $\mathcal{U} = \mathcal{T} \times \mathcal{S}$  admits exactly one state (see [6]); moreover, this only state attains 1 at all elements greater than or equal to the element  $u = (1_{\mathcal{T}}, 0_{\mathcal{S}})$ .

Let M be a countable set. For each  $C \subseteq M$ , let us take a copy,  $\mathcal{U}_C$ , of the logic  $\mathcal{U}$ . Let us now denote by  $u_C$  the element of  $\mathcal{U}_C$  corresponding to  $u \in \mathcal{U}$  and let us construct the horizontal sum,  $\mathcal{V}$ , of the collection  $\{\mathcal{U}_C : C \subseteq M\}$  (see [5] for the definition of the horizontal sum). Finally, let us construct our counterexample,  $\mathcal{L}$ , as a sublogic of the product  $\mathcal{W} = \prod_{m \in M} \mathcal{V}$ . We define  $\mathcal{L}$  as the collection of all  $f \in \mathcal{W}$  satisfying the following condition:

whenever  $f(m) \in \mathcal{U}_C \setminus \{0, 1\}$  for some  $m \in M$  and  $C \subseteq M$ , then  $m \in C$  and f is constant on C.

First, let us prove that  $\mathscr L$  is a logic. Trivially,  $\mathscr L$  is closed under the formation of orthocomplements in  $\mathscr W$ . It remains to be shown that  $\mathscr L$  is closed under the formation of countable orthogonal joins in  $\mathscr W$ . Let  $\{f_n\}_{n\in N}$  be a sequence of mutually orthogonal elements of  $\mathscr L$  and let f be its join in  $\mathscr W$ . Suppose that  $f(m)\in\mathscr U_C\setminus\{0,1\}$  for some  $m\in M$  and  $C\subseteq M$ . All elements  $f_n(m)$ ,  $n\in N$ , satisfy  $f_n(m)\leq_{\mathscr V}f(m)$ , so they have to belong to  $\mathscr U_C$ . We see therefore that  $m\in C$ . All  $f_n$  with  $f_n(m)\neq 0$  must be constant on C. There is some  $f_i$  satisfying  $f_i(m)\neq 0$ . For all  $f_j$  such that  $f_j(m)=0$ , the relation  $f_i\perp f_j$  implies that  $f_j$  attains values from  $\mathscr U_C$  on the whole C. Hence,  $f_j$  is constant (equal to zero) on C. Thus, all  $f_n$  as well as f are constant on C and, moreover,  $f\in\mathscr L$ . We have proved that  $\mathscr L$  is a logic.

Notice also that  $\mathscr L$  is a lattice (this was not required in [1] but it might be important in another context), though the lattice operations in  $\mathscr L$  do not coincide with those of the lattice  $\mathscr W$ .

For each  $C \subseteq M$  and  $v \in \mathcal{U}_C$ , let us denote by  $v \mid C$  the element of  $\mathscr{L}$  which attains the value v on C and which vanishes on  $M \setminus C$ .

Let us now define  $\mathscr{P} \subseteq \mathscr{L}$  as the collection containing  $0_{\mathscr{W}}$  and all elements of the form  $\bigvee_{C \in \mathscr{F}} u_C \mid C$ , where  $\mathscr{F}$  is a finite collection of mutually disjoint subsets of M. Each element of  $\mathscr{P}$  is of a finite length. One can check easily that  $\mathscr{P}$  is closed under the formation of meets and that  $\mathscr{P}$  is also finitely-coverable.

Finally, let us consider the state space of  $\mathscr{L}$ . Let  $\omega$  be a state on  $\mathscr{L}$ . For each nonempty  $C\subseteq M$ , the interval logic  $\{f\in\mathscr{L}:\ f\leq 1\mid C\}$  contains a sublogic  $\{v\mid C:v\in\mathscr{U}_C\}$  admitting exactly one state. We obtain that

$$\omega(v \mid C) = \omega(u_C \mid C)$$
 for  $u_C \le v$ ,  
 $\omega(v \mid C) = 0$  otherwise.

The logic  $\mathscr L$  contains only elements of the form  $\bigvee_{C\in\mathscr I}v_c\mid C$ , where  $\mathscr I$  is a sequence of mutually disjoint subsets of M and  $v_C\in\mathscr U_C$  for all  $C\in\mathscr I$ . Each state on the sublogic  $\{1\mid C:C\subseteq M\}$  of  $\mathscr L$  extends uniquely to  $\mathscr L$ . Thus, all states on  $\mathscr L$  are  $\mathscr P$ -regular but some of them are not  $\sigma$ -additive. The proof is complete.

## REFERENCES

1. O. R. Béaver and T. A. Cook, States on quantum logics and their connection with a theorem of Alexandroff, Proc. Amer. Math. Soc. 67 (1977), 133-134.

- 2. A. Dvurečenskij, T. Neubrunn, and S. Pulmannová, Regular states and countable additivity on quantum logics, Proc. Amer. Math. Soc. (to appear).
- 3. R. J. Greechie, Orthomodular lattices admitting no states, J. Combin. Theory 10 (1971), 119-132.
- 4. S. P. Gudder, Stochastic methods in quantum mechanics, North-Holland, New York, 1979.
- 5. G. Kalmbach, Orthomodular lattices, Academic Press, London, 1983.
- 6. P. Pták, Exotic logics, Colloq. Math. 54 (1987), 1-7.

Department of Mathematics, Faculty of Electrical Engineering, Technical University of Prague, 166 27 Prague 6, Czechoslovakia