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REGULARITY AND ¿j-ADDITIVITY
OF STATES ON QUANTUM LOGICS

MIRKO NA VARA

(Communicated by Palle E. T. Jorgensen)

Abstract. In 1977, Béaver and Cook [1] introduced the notion of regularity

of states on quantum logics. They presented a generalization of Alexandroff

theorem: each regular finitely additive state on a quantum logic is countably

additive. Recently, Dvurecenskij, Neubrunn, and Pulmannová [2] observed an

incorrectness in the original proof and doubted thus the validity of the result.

We construct here a counterexample.

Let us briefly recall necessary notions (see [1] and [2]). (More details on

quantum logics can be found in [4] and [5].)

By a iquantum) logic we mean an orthomodular poset 3T. It is called o-

orthocomplete if each countable orthogonal sequence has a join in S? . A state

on a quantum logic J? is a mapping co : Sf -> [0, 1] such that (i) <y(l) = 1,

(ii) <y(¿z V b) = coia) + co{b) whenever a ± b. A state co is called countably

additive if co(\/n€N a„) = 2^neN ^K0«) whenever {a„}„eN is an orthogonal

sequence in Sf having a join.

Suppose that 3° is a subset of 3?. A state co on Sf is called 3°-regular

if for each e > 0 and each q c ¿2? there exists p e 3s with p < q and

coiq A p') < s (here p' means the complement of p ). The set 3° is called

finitely coverable if for each p c3> and each sequence {pn}n€N Q 3s such that

V„ejv Pn exists and p < \/neN p'„ there exists a k c N satisfying p < y„<k p'„ .

The theorem of Béaver and Cook we want to consider was formulated as

follows: Let Sf be a a-orthocomplete quantum logic and let 3° be a finitely

coverable subset of Sf containing the meet of any sequence in 3°. Then each

^-regular state on 21 is countably additive.

In [2] the authors showed that the original proof of Béaver and Cook was

applicable only for subadditive states. They also proved that the Béaver-Cook

theorem was not valid for quantum logics which were not er-orthocomplete.

They left open the validity of the original result. As we shall show here, there

is a counterexample to the Béaver-Cook theorem. The method for obtaining it

is however quite different from that of [2].

Let us start with a finite (lattice) logic 5? admitting no states (see e.g. [3]).

Let us take a trivial logic 3~ = {O3-, l^}.   (We use indices following the
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symbols 0, 1, <, A, V, etc. in order to distinguish which logic we refer to.)

As known, the direct product í¿ = 3~ x 3? admits exactly one state (see [6]);

moreover, this only state attains 1 at all elements greater than or equal to the

element u = (1_9-, 0^).
Let M be a countable set. For each C ç M, let us take a copy, %c > of the

logic y. Let us now denote by «c the element of 'V/ç corresponding to zz € ^

and let us construct the horizontal sum, IP", of the collection {%■ : C ç M}

(see [5] for the definition of the horizontal sum). Finally, let us construct our

counterexample, 3f , as a sublogic of the product W = Y[meM V ■ We define

3? as the collection of all f cW satisfying the following condition:

whenever /(m) e ^c \ {0, 1} for some m c M and C ç M,

then m c C and f is constant on C.

First, let us prove that 3f is a logic. Trivially, 3f is closed under the

formation of orthocomplements in W. It remains to be shown that 3? is

closed under the formation of countable orthogonal joins in W . Let {fn}n€N

be a sequence of mutually orthogonal elements of 2? and let / be its join in

W. Suppose that /(m) e %■ \ {0, 1} for some m c M and C ç M. All
elements /«(m), n c N, satisfy fim) <^ fm), so they have to belong to
%?c ■ We see therefore that m c C. All /„ with f„im) ^ 0 must be constant

on C. There is some f satisfying fiim) ^ 0. For all f such that fj{m) = 0,

the relation f L f implies that f¡ attains values from %■ on the whole C .

Hence, f¡ is constant (equal to zero) on C. Thus, all /„ as well as / are

constant on C and, moreover, f c2C. We have proved that Sf is a logic.
Notice also that 3? is a lattice (this was not required in [1] but it might

be important in another context), though the lattice operations in 3? do not

coincide with those of the lattice W.

For each C ç M and v c %?c, let us denote by v \ C the element of 3?

which attains the value v on C and which vanishes on M\C.

Let us now define 3° ç 3f as the collection containing 0^- and all elements

of the form Vce^" uc\C, where 3~ is a finite collection of mutually disjoint

subsets of M. Each element of 3° is of a finite length. One can check easily

that 3° is closed under the formation of meets and that 3s is also finitely-

coverable.

Finally, let us consider the state space of 3?. Let co be a state on 3f . For

each nonempty C ç M, the interval logic {f c 3f :  / < 1 | C} contains a

sublogic {v \ C : v c^c} admitting exactly one state. We obtain that

coiv I C) = coiuc | C)   for uq <v ,

coiv I C) = 0   otherwise.

The logic 3? contains only elements of the form \fCeJr vc\C, where «y is

a sequence of mutually disjoint subsets of M and vc € ^c for all Ce/.

Each state on the sublogic {1 | C : C ç M} of 3f extends uniquely to 3f.

Thus, all states on 3f are ^"-regular but some of them are not tr-additive. The

proof is complete.
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