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Abstract. Let Bv be the set of real valued functions on R which are bounded

and uniformly continuous. For /, g € Brj , put

rf</,i)-iup|/(0-*MI.

Then Bv becomes a metric space. On Bv we define a flow n by n(f, t) = ft

for (/, t) e By x R . We denote the restriction of n to the hull of / e By by

r\f . If / is almost periodic, then the set of eigenvalues of r\f coincides with

the module of / (see J. Egawa, Eigenvalues of compact minimal flows, Math.

Seminar Notes (Kobe Univ.), 10 (1982), 281-291. In this paper, we extend this
result to almost periodic functions with some additional properties.

We denote the sets of real numbers and complex numbers by R and C,

respectively. Let X be a metric space with metric dx ■ A continuous mapping

T: XxR—y X is called a flow on (¿z phase space) X, if T satisfies the following

two conditions:

(1) Tix,0)=x for xcX.
(2) P(P(jc ,t),s) = P(x ,t + s) for x £X and t,s £R.

The orbit of T through x £ X is denoted by Crix), that is, Crix) =

{P(x, t); t £ R}. The closure of a set A c X is denoted by A. A subset

Af c X is called an invariant set of T if we have Crix) c Af for every

x £ M. We denote the restriction of T to an invariant set Af of T by T\M.
A nonempty compact invariant set Af of T is called a minimal set of T if

we have Crix) = M for every x £ M. If X is itself a minimal set of T, we

say that T is a minimal flow on X. We say that T is equicontinuous, if for

every e > 0 there exists a S > 0 such that for x, y £ X with dxix, y) < ô

and t £ R we have dxiTix, t), P(y, t)) < e.

Proposition 1. Let T be a flow on a compact metric space X. If T is equicon-

tinuous, then for every x £ X  CTix) is a minimal set of T.

Proof. Easy.

Let Tn be flows on I„ (zz = 1, 2, ...). We denote the product flow of

{Tn} on Y\ZxXn by n~i Tn ■
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Proposition 2. Let Tn be flows on compact metric spaces Xn (n = 1, 2, ...). If

for every n  Tn is equicontinuous, then the flow T['^=x T„ is also equicontinuous.

Proof. See [2, p. 27].

Let T be a minimal flow on a compact metric space X. a c R is called
an eigenvalue of T if there exists a continuous function Xa '■ X —> K such that

XaiTix, t)) = Xaix) expi2niat) for (jc , t) £ X x R, where K is the unit circle

in the complex plane. In this case Xa is called an eigenfunction of T belonging

to a. We denote the set of eigenvalues of T by A( T). We can see that A( T)

is an additive subgroup of R .

Proposition 3. Let T be an equicontinuous minimal flow on a compact metric
space X. Then for each pair of distinct points x, y £ X there exists a £ A(P)

such that Xaix) # Xaiy) ■

Proof. By equicontinuity of T, we can define a group structure on X, and by

this structure X becomes an Abelian topological group [7, p. 101]. We can

easily see that every character of X with respect to this group structure is an

eigenfunction of T. It follows that the proposition holds [6].

For the set A c R, we denote the least additive subgroup of R containing

A by Ä.

Proposition 4. Let T be an equicontinuous minimal flow on a compact metric

space X, and A c A( T). If for each pair of distinct points x, y £ X there

exists a £ A such that Xaix) ^ Xaiy) > then w? have A = A(P).

Proof. Since A(P) is a subgroup of R, we have A c A(P). Let CiX) be

the set of complex valued continuous functions on X with the topology of

uniform convergence, and O c CiX) all of linear combinations of {Xa}aG¿-

Then O is obviously a linear subspace of C(X). Since for a, ß £ A we

have Xa- Xß — Xa+ß > and we have f-g£0 for f,g£0. Further, every

constant function belongs to O. If / £ O, then f £ O, because for every

a £ A we have xa = X-a « where / is a complex conjugate of /. Hence by the

assumption and Stone-Weierstrass' theorem [5, p. 119], O is dense in CiX).

Let p be a unique invariant Borel measure of T (since T is equicontinuous,

T is strictly ergodic [4, p. 510]), and L2iX, p) the set of square summable

complex valued functions. We can easily see that

iXa ,Xß)=   /   XaiX)XfiiX)dpiX) = 0
Jx

for a, ß £ A(P) (a t¿ /3). Let ß £ A(P) - A . Then there exists a sequence

{h„} c 0 such that hn —* Xß uniformly as zz -* oo. Since iXß, hn) = 0 for

every zz by the above remark, we obtain lim„_00(^jg, hn) = iXß , Xß) = 0. This

means Xß = 0. This is a contradiction. Hence we have A = A(!T).

Proposition 5. Let Tn be equicontinuous minimal flows on compact metric spaces

Xn   in = 1,2,...).   Put X = \[™=xXn  and T = T[™=x Tn.   Let x £ X,

M = Crix), and A = |J~ j A(P„). Then we have A= A(P|Af).

Proof. By Propositions 1 and 2, Af is a minimal set of T and T\M is equicon-

tinuous. Let a £ A(P„). We denote the eigenfunction of T„ belonging to a by
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xin) ■ Define a function Xa- M —> K by Xaix) = Xa"\x„), where xn is the zzth

coordinate of x. Then Xa is continuous, and it is an eigenfunction of P|Af

belonging to a. Hence A c A(P|Af). Let x, y £ M (x ^ y). Then there

exists zz such that x„ ^ y„ . By Proposition 3 there exists a £ A( Tn ) such that

Xa (-*„) ̂  Xa (y„). Hence by Proposition 4 we have A = A(P|Af).

We denote the zz-dimensional Euclidean space by R" . Let Bffl be the set

of P"-valued continuous functions on R which are bounded and uniformly

continuous. For /, g £ B({¡], put dif, g) = sup(€R |/(r) - *(r)|. Then B$

becomes a metric space by this metric. On By we define a flow n by nif, t) =

f for (/, t) £ B{J] xR, where fis) = fit+s) for s £ R . Then n is obviously

equicontinuous. For / £ By , put H if) = Cnif) = {f}teR, ¡aid we denote

the restriction of n to H if) by r\f. A R" -valued continuous function / on

R is said to be almost periodic if for each e > 0 there exists a relatively dense

subset Ae of R such that \f{t + t) - /(i)| < e for t £ R and x £ AE. We
denote the set of P"-valued almost periodic functions on R by AP^ . Then

the following proposition is known [3].

Proposition 6. Let f £ AP^ . Then

(1) /€/#>.
(2) //(/) is compact, and hence r\f is an equicontinuous minimal flow on

Hif).
(3) For each a£R, linit^oo^ J^fis)expi-2nias)ds exists.

For / 6 APW , put Ay = {a £ R ; lim,^ \ /„' fis) e\pi-2nias) ds¿0}.

Proposition 7. Let f £ APW . Then Af = A(z//).

Proof. We sketch the proof for zz = 1 (see [1] for detail). Define a function

P: Hif) -* R by Fig) = g(0) for £ e //(/). Then P is continuous on //(/)
and Fin fig, t)) = F(gt) = ft(0) = *(r) for (g, t) G //(/) x P. Let A be a
set of eigenfunctions of r\f. Then A coincides with the set of characters of the

associated topological group Hif). Let X £ A(*//), and s > 0. Then there

exist {¿2>}jLi C C and {xxt} C A such that

F(^)-Ha>A(^)
;=i

< e

for g £ Hif) [6]. Since

t Jo
Fif)-Y,aJ^Ms)

j=i
ds <e

for every t £ R, we have

I        1   }■
e >  lim - /  fis) exp(—litiXs) ds

because X^ l¡   ij = 1, 2, ... , N) and

1   /*'
lim-/  exp(-27tz'(A - X¡))ds = 0.

'-100 í Jo
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Hence, since e > 0 is arbitrary, we have

1   f
lim-/  fis)expi-2niXs)ds = 0.
'->°° t Jo

This implies X £ Af, which implies Af c A(zzy). Further, we shall show Ay-
satisfies the condition of Proposition 4. Let Ay = {A/J c A(z/y) and Xi, De an

eigenfunction of z/y belonging to A,y. Then there exists a sequence {/„} such

that
In

fnit) = J2 af exp(2jnA/,0       (flf G C)
j=i

converges to / uniformly on R as zz —> oo [3, p. 48]. Put

/»

Fn(g) = T,ajn)x-JHf)XiJig)
j=l

for g £ Hif). Then P„ is continuous on //(/), and

|pn(/¿)-p(/¿)l = l/(">(0-/MI
for t£R. Since {fi}teR is dense in Hif), {P„} converges to P uniformly

on //(/). We assume that Xijig) = Xijih) ig, h £ //(/)) for all j . Then we

have git) = Figt) = lim„^oo P„(g,) = lim„^oo F„iht) = Fih,) = hit) for t £ R.
Hence g = h , which implies that Ay satisfies the condition of Proposition 4.

Hence we have Ay = A(z/y).

For zz > 2 we can easily prove the proposition for considering product flows.

Proposition 8. Let An c R in = 1,2, ...), A = \J™=X An, and B = (J~, A„ .

Then we have A = B.

Proof. Easy.

Let T and S be flows on X and Y, respectively. A continuous mapping

h: X —> Y is called a homomorphism from T to S if //(P(x, t)) = 5(/z(x), t)

holds for ix, t) £ X x R. Further, if h is a homeomorphism from X onto

Y, then we say that h is an isomorphism from T to S.

Proposition 9. Let T and S be minimal flows on compact metric spaces X

and Y, respectively. If there exists an isomorphism from T to S, then we have

A{T) = A(S).

Proof. Easy.

Let W c Rn be an open set, and BU^n\W) the set of continuous functions

from W x R to R" which satisfy the following condition: / e BU(n\W)

if and only if for each compact set K c W f is bounded and uniformly

continuous on KxR. We define a metric on BU^n\W) in the following way.

Let {Km}™=x be a sequence of compact subsets of W such that Km c Km+X

im = l,2,:..) and W = (J~=1 ÜT« . For /, g 6 BU^iW), put

dmif,g)=       sup     {|/(x, 0-£(•*> 01}»
(x,/)ezi:mxR

/j-       s _       ¿m(/, g)

*.</,*)- l+rfm(/,g)'
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and

Pif, g) = ^2^¡Pnif, g)-
n=l

Then BU^n\W) becomes a metric space by this p. On BU^n\W) we define a

flow t\ by £(/, t) = f for (/, i) e BU^\W)xR, where /,(*,*) = /(*, i+s)
for (x, s) £ W x R. It is easy to verify that it is well defined. Obviously £ is an

equicontinuous flow on BU^n\W). For / e BU^"\W), put Q(/) = Q(7) =

{ft}t€R and ¿y = Í|Q(/) . A continuous function /: If x P —► P" is said to

be almost periodic in t uniformly for x £ W if for each compact set K c W

and e > 0 there exists a relatively dense subset AKe of P such that t e ;4/¡:e

and ix, t) £ K x R imply |/(jc , z* + t) - fix, t)\ < e . The set of continuous

functions which are almost periodic in t uniformly for x £ W is denoted by

AP(n\W). The following proposition is known [3].

Proposition 10. Let f £ AP(n\W). Then

(1) f£BU("\W).
(2) ii(/) is compact, and hence ¿/ is an equicontinuous minimal flow on

"(/)■
(3) for x £ W and a £ R,

1   /*'
Xia, x) = lim - /  fix, s)expi~2nias)ds

í->0° t Jo

exists and Xia, •) is continuous on W.

For / £ AP(n\W), put AfiW) = {a £ R ; Xia, x) ? 0} . Then we have the
following theorem, which is the main theorem in this paper.

Theorem. Let f £ AP^n\W). Then we have AfiW) = A(£y).

Proof. Let a £ W, and Kit) = fia, t) for t £ R. Then ka £ AP^n) and
Hika) = {gia, •); g £ 0(/)}. Put HiK) = Haif). Define a mapping ha
from Q(/) to Haif) by haig) = gia, ■) for g € Q(/). Then ha is obvi-
ously continuous and a homomorphism from £y to n\Haif).   Let {am}^=x

be a dense subset of W. Put F = Ifëi #*»(/) and r = IT^i »\Hamif) ■
Then P is an equicontinuous flow on the compact metric space Y by Propo-

sition 2, because n\Hamif) is equicontinuous for every zz. Define a mapping

h from Qif) to F by /z(g) = (/za„,(g)) for g e Q(/). Then /z is contin-

uous and a homomorphism from £y to P. Further, we can easily see that

h is injection. Put Af = hi&lif)). Then we have Af = Cr(/z(/)) • Hence

we have A(P|Af) = Ä by Proposition 5, where A = \J™=X A(z/|//a„(/)). Put

Am = {a £ R;limt^00jj'fiam,s)expi-2nias)ds ^ 0}. Then AfiW) =

LC=1 ̂ m . In fact, U~=i ¿m C AfiW) is obvious. Let a i LCi ¿« • Then
¿(a, ¿2m) = 0 for each zzz. Since Xia, •) is continuous on W and {am}™=x

is dense in If, we have Xia, x) = 0. This means that a ^ Ay (IF), which

implies AfiW) = \Jn°l=xAm. Since A(z/|//flm(/)) = ^4m by Proposition 7, we

have A(P|Af) = AfiW) by Proposition 8. Since £y is isomorphic to T\M,

we obtain A(£y) = A(P|Af) = Af{W) by Proposition 9.
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Corollary. Let f, g £ AP^n\W). Then c¡f and £,g are isomorphic if and only

ifAfiW) = AgiW).

Proof. Since A(£y) = AfiW) = AgiW) = A(^) by the theorem and £y and
¿¡g are equicontinuous, the corollary follows.
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