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COMPACT MEASURES HAVE LOEB PREIMAGES

DAVID ROSS

(Communicated by Andreas R. Blass)

Abstract. A compact measure is a (possibly nontopological) measure that is

inner-regular with respect to a compact family of measurable sets. The main

result of this paper is that every compact probability measure is the image,

under a measure-preserving transformation, of a Loeb probability space. This

generalizes a well-known result about Radon topological probability measures.

It is also proved that a compact probability space can be topologized in such a

way that the measure is essentially Radon.

0. Introduction

Which probability measures can be represented by a Loeb space?

In [2] Robert Anderson proved that every Radon probability measure on

a Hausdorff space X is the image, under the standard part map, of a Loeb

measure on *X. Depending on the topology on X, a converse can be proved;

for example, D. Landers and L. Rogge [4] prove: if X is regular, then every

probability measure, which is the image under the standard part map of a Loeb

measure on *X, is Radon.
The situation when X is not a Hausdorff topological space is more prob-

lematic, as the standard part map is not defined. An early approach to rep-

resenting nontopological probability spaces by the Loeb measure [5] dispenses

with measurable transformations altogether, but does not appear to have much

application. The case when X is topological but not Hausdorff would seem to

be easier than the general case, but still suffers from the lack of a standard part

map (although T. Norberg [7] has recently constructed a natural analogue of the

standard part map for so-called 'sober' spaces). Such spaces arise naturally in

extremal theory and the theory of random closed sets (see e.g., [8] or [11]).

In this paper I consider a nontopological analogue of a Radon space, called a

compact probability space. The main theorem is that every compact probability

space is the image, under a measure-preserving transformation cp , of a Loeb

space, cp is very easy to construct, and acts very much like the standard part

map; in particular, it is used to define a topology on X with respect to which

cp is the standard part map, provided this topology is Hausdorff.
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A secondary, and in statement entirely standard, result is that every compact

probability space can be topologized so as to be compact-inner-regular; by ex-

tending the ¿j-algebra and the domain of the measure a bit, one can make the

probability space Radon.

1. Statement of results

Let X be any set, and se ç 9oÍX).
sé is centered if rise / 0 .
sé has the finite intersection property if every finite subset of sé is centered.
sé is a-compact (a a cardinal) provided whenever se1 ç sé has the finite

intersection property and cardinality < a, sé' is centered.

sé is compact if it is a-compact for every cardinal a .

For example, the collection of compact subsets of a topological space is com-

pact. Another example: if X is an internal set in a zc+-saturated nonstandard

model, then *i?iX) is zc-compact.

If sé is (a-) compact then clearly so is sé u {X} ; it is assumed for the

remainder of this paper that X g sé whenever sé is said to be compact.

A probability space ÍX ,3S ,P) is a-compact provided there is an a-compact

set 31 c & with PÍE) = sup{P(/Q :Kc3Z ,KCE} (in other words, if P is
3t-inner regular). The role of 3t is often emphasized by calling the probability

space 3? - (a-) compact.

Note that many authors use the term 'compact' as a synonym for K0-compact

(e.g., [9]). _

Given {X ,3§ ,P), denote by f% the completion of 3§ with respect to P ;

note that if (X, 3S, P) is ^-compact, then so is ÍX, ~38, P).
Suppose now that X is a topological space with (not necessarily Hausdorff)

topology x. Let 3§ix) be the smallest cr-algebra containing x, and let 3£i%) =

{K ç X: K is compact (relative to t)} . A probability space (X, •SP'(t) , P) is

Radon provided it is ^(T)-compact. As this term is normally applied only to

measures on Hausdorff topological spaces, the first assertion of Theorem 1.1

below is stronger than known results.

The reader is assumed to be familiar with the Loeb measure construction;

see [1], [3], or [6]. Every Loeb probability space in this paper is complete, and

the nonstandard model is saturated in the cardinality of every standard set that

arises.

Call a probability space 3?-supercompact if it is ^-compact where 3t is

closed under finite unions and arbitrary intersections.

Theorem 1.1. Suppose ÍX,aS,P) isa ^-compact probability space.

(i)  There is a measure-preserving surjection

cp:i*X, Li*3§), Li*P)) -» ÍX, 3S, P).

(ii) For some &'2&, 3Z' Ç>3Z, and extension P' of P to 3S', ÍX,3S',P')
is a 3t' -supercompact probability space.

(iii) If ÍX ,3S ,P)  is 3t-supercompact then for some topology x on X,

â§ix) c & ç &ix) and 3? ç 3fix); in particular,   ÍX, &, P)  is

Radon.

The proof in §4 actually yields more; namely, when ÍX ,â§ ,P) is extended

in (ii) to a o^-supercompact space, and the topology x is found for (iii), then
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38 is in the completion of 38iß), where ß is a basis for x. In other words,

the relation between the supercompact space ÍX, 38', P') and the compact

space ÍX ,38, P) is something like the relation of a Radon measure to the

Baire measure obtained by restriction to the Baire algebra.

2. The topology x9

In this section X is any set, S ç *X is arbitrary, and cp: S —► X is a

surjection. Call E ç X cp-open provided <p~lÍE) ç *E, and cp-closed if Ec is

ç>-open (equivalently, if S n *E ç cp~xÍE)). Put xv = {u C X: u is cp-open}.

Lemma 2.1. (i) xv is a topology on X.

(ii) If E is cp-closed, X ç S, and S <~)*E is internal, then E c 3?ix9).

Proof, (i) Clearly 0, X € x9 . If u,v G x9 then cp~xiuflv) = cp~liu)C\

<p~liv) ç *u n *v = *iu n»), so x9  is closed under finite intersections.   If

{Ui}i€i ç x9 then p_1(UzM¿) = Uzi»_1("/) Ç U/*"/ £ *(UzM/)> s0 Tf is
closed under arbitrary unions; this makes x9 a topology on X .

(ii) Let {Ui}ieI ç x? with E ç (J, «ï . Then 5n*£: ç 9>~'(P) ç ^"'(U/ "<) =
U/^_1(zzi) ç \J,*Uj. Since S n *E is internal, and the model is card(/)-

saturated, SD*E C *zz(l u• • ■ U*u¡n for some finite {ix, ... , in} c I. If x c E

then x G S n *E ç *(«,-, u ••• U îz,J ; by transfer, x G «,-, U ■ • • U uin. It follows
that £ Ç a¡, U — U uin. Since {zz,}¡e/ was an arbitrary open cover of E,

Ec3rixf).

Note the following: (1) The hypotheses " S n*E is internal" in this lemma

can be replaced by " 5" n *E is the intersection of k many internal sets" when

the model is zc+-saturated.
(2) If S = *X then every ç?-closed set, including X, is in 3Tixv). This is

the case for the remainder of the paper.

(3) When x9 is not Hausdorff, then the elements of 3Zix9) need not be

closed.
(4) If x9 is Hausdorff, X ç S, and cpix) = x for all x G X, then cp is the

standard part map on S.

3. Compact families

Suppose X is any set, and that 3tf ç 3aÍX) is compact. Define a set function

cpjf-. *X -> X by cpjfix) = n{K e 3?' : x G *K} . Since 3Z is compact, cp^ix)
is always nonempty. A function cp: *X —► X with ¿?(x) G í?^(x) for all x

is a selection of #>x ; if in addition cpix) = x for all x c X then ç> is a

gocrá selection. Note that every good selection is a surjection; moreover, since

x G ç>jr(x) for every x G X, good selections always exist.

Lemma 3.1. Let 3t ç <?>ÍX) be compact, and let cp be a good selection of cp^ .

Let Kc3T. Then:

ii)   cpi*K) = K;
(ii)   K is cp-closed;

(iii)   KsXix,).

Proof, (i) If x G *K then ç>(x) G cp^ix) ç A^ by definition of cp^ . Conversely,

if x G K, then x = ç»(x) ç ¿?(ä:) c çj(*uT) , so ç holds.
(ii) Immediate from (i).
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(iii) By (ii) and Lemma 2.1.

Corollary 3.2. Suppose 3t ç 3eÍX) is compact. Then:

(i) Every subset of 3? is compact.

(ii)  The closure of 3Z under finite unions is compact.

(iii)  The closure of 3Z under arbitrary intersections is compact.

Proof, (i) is clear; (ii) and (iii) follow since every element of 3Z is cp-closed, the

collection of ç>-closed sets is closed under finite unions, arbitrary intersections,

and by Lemma 3.1 is a subset of the compact collection 3Tix9).

Consider an example. Suppose X = R, and 3? is the collection of compact

subsets of R. For x a nearstandard element of *R, local compactness of

R ensures that cpix) = st(x). If x is not nearstandard then cpix) can be

anything at all; for convenience, suppose cpix) = 0 for such x. Evidently xv

consists of those usual open subsets of R that do not contain 0, together with all

complements of compact sets. Note that xv clearly depends on the particular
choice of cp.

It is easy to see directly why R is compact in this topology. Any open cover

% contains an element u with 0 G u. Then uc is compact, and so has a finite

subcover from % . This subcover, together with u, covers R.

4. Proof of Theorem 1.1

By Corollary 3.2 it may be assumed that 3Z is closed under finite unions.

Let <p be a good selection of cpx ■
If E G 38 and e > 0, then there are K,K' c3Z with K CE, K' ç Ec,

and PiE\K) + PÍEC\K') < e. Put U = iK')c G xv ; then *K ç <p~\K) ç
<p~\E) ç cp-xÍU) c *U and *PÍ*U\*K) < e. Since e is arbitrary, and by
assumption Li*P) is complete, cp~xÍE) is Li*P) measurable with measure

PÍE). This proves (i).
Let ß = {Kc: K c 3Z}; since 3? is closed under finite unions, ß is closed

under finite intersections, and so forms a basis for a topology x. By Lemma

3.1, 3Z ç 3Zíx9), and since t ç rf, 3lfix9) ç 3tíx). A typical x-closed
set has the form E = n¡K¡ where each K¡ G 3f. If in fact {X ,38 ,P) is
^-supercompact then E G 3Z ; since 3t Ç38 , (iii) is immediate.

Suppose for (ii), that ÍX, 38 , P) is not o^-supercompact. Let 38' be the

smallest o -algebra containing 33 íx) U 38 , and let 3?' be the closure of 3f

under arbitrary intersections; in other words, 3?' is the collection of t-closed

subsets of X. By Corollary 3.2, 3?' is compact. It remains to extend P to a

3?'-inner regular probability measure defined on all of 38'.

As above, let E = f\¡ K¡, where each Ki G 3?. Without loss of gener-
ality, {Ki}i€i is closed under finite intersections. If n c I, then P(A"„) =

Lj*P)cp-xiKn) > Wñcp-'íftjKi) > L(*P)(D7 ?-'(*/)) > L('P)(n7 *Kj).

(Here Li*P) and Li*P) are the Loeb inner and outer measures on *X.)

From a result of Landers and Rogge [4], f)¡*K¡ is L(*P)-measurable with

Li*P)iC\i*Ki) = infiel Li* P)i*K,) = inf,€/P(AT(). Since n G / is arbitrary,

f]j cp~xÍKj) = g>~lÍE) is measurable with measure inf/e/ P(A",-).

As cp is therefore measurable with respect to 38ix), it is measurable with re-

spect to all of 38', and is measure-preserving if one puts P'(P) = L(*P)cp~xiE)

for E c38'. It remains to show that P' is ^'-inner regular.
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Call A ç X approximable if for all e > 0 there exist E c 3?' and u c x

suchthat E ç ACu and P(w\P) < e . Let sé = {AC X\A approximable}. P'
is ^'-inner regular if 38' ç sé ; as 38 ç sé it suffices to show that 3Z' C sé ,

and that sé is closed under complementation and countable union.

If E = fi, Ki G 3T, each K¡ c 3T , then P(P) = inf,6/ P{Kt). Fix e > 0,
and let i G / with />(#,-) < P(£,)+e/2. Let K G 3Z with ÍT ç Kf and P(ÄT) >
P(#f ) - e/2. Put w = Kc. Then ECECu and P(w\-E) < e/2 + e/2 = e, so
Ecsé .

If Ac sé , and e > 0, let E ç A ç u with E G 3f', u c x, and P^YE) <
e ; then zzc ç Ac ç Pc, wc 6 3T', Ec c x, and Piuc\Ec) = Piu\E) < e, so

,4e G J/.

If An c sé for zz G N, and e > 0, let E„ C A„ C u„ with E„ G 3Z',

uncx, and Piun\En) < e/2n+l . Let ¿V g N with P(P) > Pi(JnE„) - e/2,

where E = (J„<AiP„ . Put u = \Jn un . Then E ç\JnAn ç u and P(u\E) <

P(u\ U„ E„) + P(U„ P„\E) < E„ ^("»^i.) + e/2 < e/2 + e/2 = e , so lj„ An G
j/.

This proves that P' is 3Z'-inner regular, and completes the theorem.

Remark. Suppose that ÍS, sé , m) is an internal, finitely-additive * measure

space with S ç *X and w(5 D *K) « P(*Ä") for every K c 3Í. It is not
difficult to see that the proof of Theorem 1.1(1) holds when ÍS, Lise), Lim))
is everywhere substituted for i*X, L{*38), L(fP)), using the restriction of cp

to S. This is a common setting in the applications of the Loeb measure.

5. Open problems

Problem 1. Is Loeb measure compact?

This question, first posed in [10], remains open. Clearly Loeb measure is

zc-compact if the nonstandard model is zc+-saturated.

An affirmative answer would simplify the proof (in [10]) that Loeb measur-

able functions into metric spaces have liftings. It would also make it possible

(using Theorem 1.1 ) to obtain every Loeb probability measure as the measurable

image of a more saturated Loeb measure, a result that would prove useful.

The answer may well depend on the particular nonstandard model, or even

on the existence of large cardinals.

Problem 2. Is the image of every Loeb measure compact?

More precisely, suppose cp is a measure-preserving transformation from

a Loeb probability space (Í2, Lise), Lip)) to a standard probability space

ÍX, 38, P) ; need ÍX, 38, P) be a compact measure? An affirmative answer

is, of course, the converse to Theorem 1.1.

Note that the answer is unknown even when (Jf, 38, P) is a Radon measure

on a Hausdorff topological space; however, if X is regular and cp has a lifting,

then an affirmative answer follows from known results, e.g. in [4].
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